Synopsis#
MLC-BMaD - Multi-Label Classification using Boolean Matrix Decomposition. Transforms the labels using a Boolean matrix decomposition, the first resulting matrix are used as latent labels and a classifier is trained to predict them. The second matrix is used in a multiplication to decompress the predicted latent labels. For more information see: J"org Wicker, Bernhard Pfahringer, Stefan Kramer: Multi-Label Classification using Boolean Matrix Decomposition. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, 179-186, 2012.
BibTeX#
@inproceedings{J"orgWicker2012,
author = {J"org Wicker, Bernhard Pfahringer, Stefan Kramer},
booktitle = {Proceedings of the 27th Annual ACM Symposium on Applied Computing},
pages = {179-186},
title = {Multi-Label Classification using Boolean Matrix Decomposition},
year = {2012}
}
Options#
-
-size <value>Size of the compressed matrix. Should be less than the number of labels and more than 1. (default: 20)
-
-threshold <value>Threshold for the matrix decompositon, what is considered frequent. Between 0 and 1. (default: 0.5)
-
-W <classifier name>Full name of base classifier. (default: meka.classifiers.multilabel.BR)
-
-output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console
-
-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
-
-num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2).
-
-batch-sizeThe desired batch size for batch prediction (default 100).
Options specific to classifier meka.classifiers.multilabel.BR:
-
-W <classifier name>Full name of base classifier. (default: weka.classifiers.trees.J48)
-
-output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console
-
-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
-
-num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2).
-
-batch-sizeThe desired batch size for batch prediction (default 100).
Options specific to classifier weka.classifiers.trees.J48:
-
-UUse unpruned tree.
-
-ODo not collapse tree.
-
-C <pruning confidence>Set confidence threshold for pruning. (default 0.25)
-
-M <minimum number of instances>Set minimum number of instances per leaf. (default 2)
-
-RUse reduced error pruning.
-
-N <number of folds>Set number of folds for reduced error pruning. One fold is used as pruning set. (default 3)
-
-BUse binary splits only.
-
-SDo not perform subtree raising.
-
-LDo not clean up after the tree has been built.
-
-ALaplace smoothing for predicted probabilities.
-
-JDo not use MDL correction for info gain on numeric attributes.
-
-Q <seed>Seed for random data shuffling (default 1).
-
-doNotMakeSplitPointActualValueDo not make split point actual value.
-
-output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console
-
-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
-
-num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2).
-
-batch-sizeThe desired batch size for batch prediction (default 100).