Synopsis#
Combining several multi-label classifiers using Bootstrap AGGregatING. Duplicates Instances instead of assigning higher weights -- should work for methods that do not handle weights at all.
Options#
-
-I <num>
Sets the number of models (default 10)
-
-P <size percentage>
Size of each bag, as a percentage of total training size (default 67)
-
-S <seed>
Random number seed for sampling (default 1)
-
-W <classifier name>
Full name of base classifier. (default: meka.classifiers.multilabel.CC)
-
-output-debug-info
If set, classifier is run in debug mode and may output additional info to the console
-
-do-not-check-capabilities
If set, classifier capabilities are not checked before classifier is built (use with caution).
-
-num-decimal-places
The number of decimal places for the output of numbers in the model (default 2).
-
-batch-size
The desired batch size for batch prediction (default 100).
Options specific to classifier meka.classifiers.multilabel.CC:
-
-S <value>
The seed value for randomizing the data. (default: 0)
-
-W <classifier name>
Full name of base classifier. (default: weka.classifiers.trees.J48)
-
-output-debug-info
If set, classifier is run in debug mode and may output additional info to the console
-
-do-not-check-capabilities
If set, classifier capabilities are not checked before classifier is built (use with caution).
-
-num-decimal-places
The number of decimal places for the output of numbers in the model (default 2).
-
-batch-size
The desired batch size for batch prediction (default 100).
Options specific to classifier weka.classifiers.trees.J48:
-
-U
Use unpruned tree.
-
-O
Do not collapse tree.
-
-C <pruning confidence>
Set confidence threshold for pruning. (default 0.25)
-
-M <minimum number of instances>
Set minimum number of instances per leaf. (default 2)
-
-R
Use reduced error pruning.
-
-N <number of folds>
Set number of folds for reduced error pruning. One fold is used as pruning set. (default 3)
-
-B
Use binary splits only.
-
-S
Do not perform subtree raising.
-
-L
Do not clean up after the tree has been built.
-
-A
Laplace smoothing for predicted probabilities.
-
-J
Do not use MDL correction for info gain on numeric attributes.
-
-Q <seed>
Seed for random data shuffling (default 1).
-
-doNotMakeSplitPointActualValue
Do not make split point actual value.
-
-output-debug-info
If set, classifier is run in debug mode and may output additional info to the console
-
-do-not-check-capabilities
If set, classifier capabilities are not checked before classifier is built (use with caution).
-
-num-decimal-places
The number of decimal places for the output of numbers in the model (default 2).
-
-batch-size
The desired batch size for batch prediction (default 100).