Synopsis#
Extremely Randomised Forest of HOMER trees.
BibTeX#
@inproceedings{Li2017,
   address = {Cham},
   author = {Li, Jinxia and Zheng, Yihan and Han, Chao and Wu, Qingyao and Chen, Jian},
   booktitle = {Intelligence Science and Big Data Engineering},
   editor = {Sun, Yi and Lu, Huchuan and Zhang, Lihe and Yang, Jian and Huang, Hua},
   pages = {450--460},
   publisher = {Springer International Publishing},
   title = {Extremely Randomized Forest with Hierarchy of Multi-label Classifiers},
   year = {2017},
   ISBN = {978-3-319-67777-4}
}
Options#
- 
-T thresholdPrediction threshold 
- 
-I <num>Sets the number of models (default 10) 
- 
-P <size percentage>Size of each bag, as a percentage of total training size (default 67) 
- 
-S <seed>Random number seed for sampling (default 1) 
- 
-W <classifier name>Full name of base classifier. (default: meka.classifiers.multilabel.BR) 
- 
-output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console 
- 
-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution). 
- 
-num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2). 
- 
-batch-sizeThe desired batch size for batch prediction (default 100). 
Options specific to classifier meka.classifiers.multilabel.BR:
- 
-W <classifier name>Full name of base classifier. (default: weka.classifiers.trees.J48) 
- 
-output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console 
- 
-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution). 
- 
-num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2). 
- 
-batch-sizeThe desired batch size for batch prediction (default 100). 
Options specific to classifier weka.classifiers.trees.J48:
- 
-UUse unpruned tree. 
- 
-ODo not collapse tree. 
- 
-C <pruning confidence>Set confidence threshold for pruning. (default 0.25) 
- 
-M <minimum number of instances>Set minimum number of instances per leaf. (default 2) 
- 
-RUse reduced error pruning. 
- 
-N <number of folds>Set number of folds for reduced error pruning. One fold is used as pruning set. (default 3) 
- 
-BUse binary splits only. 
- 
-SDo not perform subtree raising. 
- 
-LDo not clean up after the tree has been built. 
- 
-ALaplace smoothing for predicted probabilities. 
- 
-JDo not use MDL correction for info gain on numeric attributes. 
- 
-Q <seed>Seed for random data shuffling (default 1). 
- 
-doNotMakeSplitPointActualValueDo not make split point actual value. 
- 
-output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console 
- 
-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution). 
- 
-num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2). 
- 
-batch-sizeThe desired batch size for batch prediction (default 100).