
MetropolJS: Visualizing and Debugging Large-Scale JavaScript
Program Structure with Treemaps

Joshua D Scarsbrook
University of Waikato

jds30@students.waikato.ac.nz

Ryan K L Ko
University of Waikato
ryan.ko@waikato.ac.nz

Bill Rogers
University of Waikato

coms0108@waikato.ac.nz

David Bainbridge
University of Waikato
davidb@waikato.ac.nz

ABSTRACT
As a result of the large scale and diverse composition of modern
compiled JavaScript applications, comprehending overall program
structure for debugging is challenging. In this paper we present
our solution: MetropolJS. By using a Treemap-based visualization
it is possible to get a high level view within limited screen real
estate. Previous approaches to Treemaps lacked the fine detail and
interactive features to be useful as a debugging tool. This paper
introduces an optimized approach for visualizing complex program
structure that enables new debugging techniques where the exe-
cution of programs can be displayed in real time from a bird’s-eye
view. The approach facilitates highlighting and visualizing method
calls and distinctive code patterns on top of code segments without
a high overhead for navigation. Using this approach enables fast
analysis of previously difficult-to-comprehend code bases.

CCS CONCEPTS
• Security and privacy → Software reverse engineering; •
Software and its engineering→ Software prototyping;

KEYWORDS
JavaScript, Treemaps, Debugging

ACM Reference Format:
Joshua D Scarsbrook, Ryan K L Ko, Bill Rogers, and David Bainbridge. 2018.
MetropolJS: Visualizing and Debugging Large-Scale JavaScript Program

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5714-2/18/05.
https://doi.org/10.1145/3196321.3196368

Structure with Treemaps. In ICPC ’18: ICPC ’18: 26th IEEE/ACM Interna-
tional Confernece on Program Comprehension , May 27–28, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3196321.3196368

1 INTRODUCTION
MetropolJS (pronounced “Metropolis”) is a program visualization
and comprehension tool designed to help developers visualize
static and dynamic aspects of large-scale applications written in
JavaScript. This visualization tool is particularly focused on im-
proving the productivity of researchers in Cyber Security. During
reverse engineering it is rare to have access to any of the source code.
Without it the functionality of the program is hidden in a compiled
block with all the forms of documentation removed. MetropolJS
helps to reveal this lost structure.

The teaser figure (shown above) is part of a rendering of the
Underscore.js[1] test suite generated from MetropolJS data. The
many peaks and colors represent different parts of the JavaScript
source and information gathered during program execution. In
operation MetropolJS is used to view execution of code in real-time,
with the data displayed shown in 2D form as seen in Figures 2a–2d
(video of the process is available in the source repository[8]).

Figure 1 shows the basic architecture of MetropolJS. The pro-
gram being debugged is stored as an Abstract Syntax Tree (AST)
organized by source script and tree layer. The debugging interface
controls the operation of external JavaScript execution environ-
ments. Operation can best be explained by considering some use
cases.

1.1 Visualizing Program Structure
The big challenge encountering a new codebase is comprehending it,
especially when access to the source files is not possible. MetropolJS
is designed to provide a high level visualization of tens of thousand
line source files. In well maintained software projects the structure

https://doi.org/10.1145/3196321.3196368
https://doi.org/10.1145/3196321.3196368

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Joshua D Scarsbrook, Ryan K L Ko, Bill Rogers, and David Bainbridge

Figure 1: An architectural overview of MetropolJS.

is logically split into a series of packages and classes. In compiled
JavaScript the structure is no longer clear. It still exists but the
whitespace has been removed and libraries have been collapsed into
a single source files. Because of this reading the structure becomes
challenging. By reducing the source code to an abstract syntax
tree and laying out the resulting structure with a Treemap[11] the
obfuscated structure can be clarified.

MetropolJS achieves this by parsing source code and converting
the resulting Abstract Syntax Tree into a binary tree for rendering.
Given input such as Figure 3a the resulting tree looks like Figure
3b.

Figure 2a shows part of UnderscoreJS with the AST nodes laid
out. From this examples of single functions can be seen such as
Figure 2a A○. As shown in Figure 3b a function definition consists of
2 major groups The two (sub) boxes on the left side of the example
represent the function arguments and the right side contains the
function body.

Figure 2a B○ shows a boundary between 2 scripts or packages
made clear by a nested structure resulting code patterns normally
used to define modules in JavaScript.

1.2 Dynamic Code Coverage
Figure 2b shows how the code coverage analysis produced by
MetropolJS reveals a high-level overview of program execution
progress in real time. The connection to the live execution environ-
ment has provided the information for continuous updates to the
visualization. Figure 2b A○ captures this as the program is execut-
ing. The black overview line marks the current call stack and as it
moves around the visualization the nodes are steadily highlighted.
Figure 2b B○ shows an example of visited source code that has been
highlighted in gray.

1.3 Program Analysis for Complex Structure
During a security audit of a code base it is as important to look at
what is being called as where it is being called from. As an example
overwritten function definitions or unusual patterns of native calls
could indicate compromised code. In our prototype this data is
represented by highlighting nodes based on feedback from the
interpreter. In Figure 2c assignment expressions targeting variables
containing functions have been highlighted in blue and an example
to the right of a call to a native function is highlighted in red.

This system is structured to encourage further plug-in devel-
opment by utilizing the observer pattern for the debugger and
providing high-level rendering access though a public API. In this
example the function overwrite detection was implemented by
adding a patch to JSInterpreter[5] to call back to MetropolJS when
a variable that previously held a function declaration is being over-
written.

1.4 Scaling up to Production Applications
All the work mentioned so far relates to uses with a securely sand-
boxed JavaScript runtime called JSInterpreter[5]. While this ap-
proach has served well for access to internal runtime state it lacks
the access to system services and speed to observe real-world ap-
plications run with the full feature set enabled. The solution to this
has been to connect to the V8[2] runtime. V8 Provides a debugging
API[3] which can be used to collect information and control the
runtime of a Chromium based browser or Node.js.

Giving an example. The previous use cases focused on Under-
score.js and it’s test suite. This is a self-contained librarywithout sig-
nificant third party requirements. To demonstrate how MetropolJS
can scale up, OpenMCT[6] was chosen as a test case. OpenMCT
is a mission control dashboard used by NASA. It is comprised
of a Node.js server component and a web application written in
JavaScript. Using the V8 Inspector API it is possible to connect
MetropolJS to both the server side and client side application.

One of the big differentiating factors between small-scale and
production applications is the size of the code and how it has been
split up. OpenMCT comprised of hundreds of libraries which all
need to be loaded to produce a comprehensive viewpoint. Figure 2d
shows a snapshot of this in practice. This is a zoomed in snapshot a
NodeJS program with MetropolJS connected to the Node.js Server.

This data source is still not feature complete compared to the
sandboxed interpreter. It gathers coverage by repeatably querying
V8 for statement-level coverage. Compared to the JSInterpreter de-
bugger this does not support node-level coverage or live execution
traces. Possible solutions will be discussed later in the Implementa-
tion and Future Work sections.

2 PROTOTYPE IMPLEMENTATION
2.1 Tree Layout
This visualization is implemented by considering each source doc-
ument an independent entity. The source file is parsed into an AST
then the resulting tree is walked to produce the geometry. The
geometry generation process is based on the BinaryTree[11] algo-
rithm and works by repeated binary divisions of the tree. Space is
allocated for nodes by recursively calculating the total number of
nodes in each subtree and dividing the node geometry in proportion
to the number of nodes in each subtree. This takes into account
internal nodes as well as leaf nodes to prevent deeply nested nodes
from shrinking too much.

The format alsomeans node lookups can be performed inO(logn)
time using a binary tree search.

2.2 Application and Renderer
The visualization has been implemented as a web application with
rendering built on top of THREE.js[4] and WebGL.

MetropolJS ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

(a) A section of Underscore.js rendered withMetropolJS. (A○ and
B○ are overlaid for explanation)

(b) A section from the same program rendered with code cover-
age information overlaid.

(c) MetropolJS being used to overlay locations of function over-
writes and specified native calls.

(d)MetropolJS connected toNodeJS though theV8 Inspector Pro-
tocol.

Figure 2: Examples of MetropolJS in use.

(a) Example JavaScript code to be parsed.

1 /**

2 Add 2 numbers together

3 @param {number} a

4 @param {number} b

5 @return {number}

6 */

7 function test(a, b) {

8 return a + b;

9 }

(b) The resulting AST and sizes used by MetropolJS.

1 -FunctionDeclaration (size =9)

2 -Identifier[test] (size =1)

3 -Identifier[a] (size =1)

4 -Identifier[b] (size =1)

5 -BlockStatement (size =5)

6 -ReturnStatement (size =4)

7 -BinaryExpression (size =3)

8 -Identifier[a] (size =1)

9 -Identifier[b] (size =1)

Figure 3: An example of JavaScript code being parsed and the resulting AST

The layout produces a binary tree containing location informa-
tion which is compiled into geometry. This is done with a layered
approach to enable deferred loading and improve memory band-
width efficiency.

The binary tree is rendered by converting it into a series of layers
with pointers to facilitate small updates to the geometry such as
tinting the color of nodes. The stage can take multiple seconds as
larger trees can have over 1,000,000 nodes that need to be rendered.
For this reason the rendering process is completed over multiple
frames to keep the user interface interactive while rendering occurs.
The approach to rendering helps reduce work on the GPU during
this process by splitting a very large model into a series of easy to
manage layers.

2.3 Scaling the Renderer
Table 1 shows metrics collected during the testing of MetropolJS.
Testing was conducted on a desktop system with an Intel Core
i5-7600K and an Nvidia Geforce GTX960 with MetropolJS running
in Chrome 64.0. Performance was well within acceptable limits
for all scripts tested with all of them meeting the 60FPS baseline
for high-quality animation. Of particular note is three.js[4] where
MetropolJS maintained high performance even while rendering 1.6
million vertices.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Joshua D Scarsbrook, Ryan K L Ko, Bill Rogers, and David Bainbridge

Table 1: Scripts Rendered with MetropolJS.

Name Version Vertex Count Layer Count Lines of Code Frames per Second

jQuery 3.2.1 371,705 43 3,258 444.44
three.js r88 1,682,892 36 18,821 462.96
Lodash 4.17.4 336,089 31 3,600 476.19
Vue 2.5.3 368,041 35 3,563 490.20
Polymer 0.5.5 451,435 29 5,286 425.53
Moment 2.19.2 203,554 26 1,752 512.82
Underscore 1.8.3 75,503 25 713 518.13
Underscore+unittests 1.8.3 456,898 26 8,310 497.51

2.4 Debugging and Data Collection
With the dynamic updating capabilities it is possible to augment the
display with additional information gathered from script execution.
This has been achieved with a live JavaScript runtime modified to
extract information about the script being executed.

Debugging with this visualization benefits most from location
information in the source code. Since the visualization is directly
produced from the Abstract Syntax Tree this is represented as a
node in the tree. One issue encountered is that in most JavaScript
engines the AST is used after the parse step to generate low level
code, but the debugging is conducted using source code locations.

To overcome this a JavaScript Interpreter was modified to extract
the information about AST nodes from its current application stack.
JSInterpreter executes the AST directly without intermediate byte
code so the patch fetched the current stack frame and resolved it to
an AST Node.

This approach simplifies demoing MetropolJS but does not pro-
vide all the system level APIs necessary to run real world applica-
tions. To solve this the V8 debugger API was leveraged to connect
to live applications and websites.

3 RELATEDWORK
Treemaps are a well developed visualization technique with work
dating back to 1991[10]. For example,WinDirStat[9] builds a Treemap
of a file system to show file sizes. However existing work in visu-
alization of software structure has focused on the production of
off-line analysis tools.

NDepend[7] provides a variety of visualizations one of which
uses a Treemap to visualize source code metrics by overlaying code
coverage over top a Treemap built from the code structure of a
project. This solution has similar goals to MetropolJS in providing
a high-level visualization of file and program structure. However
it is not connected to a debugger and can not provide real time
coverage information as the program executes.

Most similar in appearance toMetropolJS is Code Cities[12]. This
technique uses a similar Treemap layout but uses height to highlight
complex or incompletely tested classes. In contrast MetropolJS uses
a live visualization of program structure to aid comprehension in
debugging and reverse engineering.

4 CONCLUSION AND FUTUREWORK
MetropolJS as introduced here is capable of rendering and super-
vising execution for self-contained applications in a sandboxed

environment. Its rendering techniques have also been shown to
scale up to real-world applications, shown in Table 1 allowing
smooth real-time navigation. As illustrated in Sections 1.2 and 1.3
the system can accumulate and dynamically display code coverage
information and interesting code patterns.

Further work is needed to pull more debugging information from
V8. The version connected to the V8 debugger can already display
coverage but it lacks the deep information to interpret program
flow. In the future it may be possible to expand on the existing V8
debugging APIs to support this.

To support future refinement MetropolJS has been released as
open source at https://github.com/Waikato/MetropolJS.

ACKNOWLEDGMENTS
The authors wish to thank the members of Cyber Security Re-
searchers of Waikato (CROW Lab) particularly Jeffery Garae and
STRATUS (Security Technologies Returning Accountability, Trust
and User-Centric Services in the Cloud - https://stratus.org.nz), a
science investment project funded by the New Zealand Ministry of
Business, Innovation and Employment (MBIE).

REFERENCES
[1] Jeremy Ashkenas and Contributors. 2009. Underscore.js. (2009). http://

underscorejs.org/
[2] V8 Authors. 2008. Chrome V8. (2008). https://developers.google.com/v8/
[3] V8 Authors. 2018. Debugging over the V8 Inspector API. (2018). https://github.

com/v8/v8/wiki/Debugging-over-the-V8-Inspector-API
[4] Ricardo Cabello and Contributors. 2010. three.js - Javascript 3D library. (2010).

https://threejs.org/
[5] Neil Fraser. 2018. JS-Interpreter: A sandboxed JavaScript interpreter in JavaScript.

(Feb. 2018). https://github.com/NeilFraser/JS-Interpreter original-date: 2013-10-
30T01:00:51Z.

[6] NASA. 2014. Open MCT - Open Source Mission Control Software. (2014).
https://nasa.github.io/openmct/

[7] NDepend. 2006. NDepend. (2006). http://ndepend.com/docs/
getting-started-with-ndepend

[8] Joshua D Scarsbrook and Contributors. 2018. Waikato/MetropolJS. (2018). https:
//github.com/Waikato/MetropolJS

[9] Bernhard Seifert and Oliver Schneider. 2003. WinDirStat. (2003). https:
//windirstat.net/

[10] Ben Shneiderman. 1992. Tree Visualization with Tree-maps: 2-d Space-filling
Approach. ACM Trans. Graph. 11, 1 (Jan. 1992), 92–99. https://doi.org/10.1145/
102377.115768

[11] Ben Shneiderman. 2005. Treemaps for space-constrained visualization of hierar-
chies. http://www.cs.umd.edu/hcil/treemap-history/

[12] Richard Wettel and Michele Lanza. 2008. CodeCity: 3D Visualization of Large-
scale Software. In Companion of the 30th International Conference on Software
Engineering (ICSE Companion ’08). ACM, New York, NY, USA, 921–922. https:
//doi.org/10.1145/1370175.1370188

http://underscorejs.org/
http://underscorejs.org/
https://developers.google.com/v8/
https://github.com/v8/v8/wiki/Debugging-over-the-V8-Inspector-API
https://github.com/v8/v8/wiki/Debugging-over-the-V8-Inspector-API
https://threejs.org/
https://github.com/NeilFraser/JS-Interpreter
https://nasa.github.io/openmct/
http://ndepend.com/docs/getting-started-with-ndepend
http://ndepend.com/docs/getting-started-with-ndepend
https://github.com/Waikato/MetropolJS
https://github.com/Waikato/MetropolJS
https://windirstat.net/
https://windirstat.net/
https://doi.org/10.1145/102377.115768
https://doi.org/10.1145/102377.115768
http://www.cs.umd.edu/hcil/treemap-history/
https://doi.org/10.1145/1370175.1370188
https://doi.org/10.1145/1370175.1370188

