This page is a work in progress describing Ensemble Selection, a relatively new and
powerful approach to supervised machine learning.

The original paper can be found here:
http://www.cs.cornell.edu/~caruana/caruana.icml04.revised.rev2.ps

Ensemble Selection in a Nutshell (informal description)

Over the years people in the field of Machine Learning have come up with all sorts of
algorithms and improvements to existing approaches. There are so many unique
supervised learning algorithms it's really hard to keep track of them all. Furthermore, no
one method is “best” because it really depends on the characteristics of the data you are
working with. In practice, different algorithms are able to take advantage of different
characteristics and relationships of a given dataset.

Intuitively, the goal of ensemble selection then is to automatically detect and combine the
strengths of these unique algorithms to create a sum that is greater than the parts.

This is accomplished by creating a library that is intended to be as diverse as possible to
capitalize on a large number of unique learning approaches. This paradigm of
overproducing a huge number of models is very different from more traditional ensemble
approaches. Thus far, our results have been very encouraging.

Preliminary Results of our WEKA Implementation

Thus far, we've seen considerable performance increases with our WEKA
implementation of Ensemble Selection. The following table shows performance on 15
learning problems from the UC-Irvine dataset repository (7 binary and 8 multi class).
These results were obtained by using half as a train set and half as test set. The Ensemble
Selection default settings were used without any parameter tuning. Unfortunately, we do
not have any error bars as training model libraries is quite expensive and we only had the
computing time to try one of each. However, as you can see, it did quite well across the
board and performance of the ensembles clearly improved over the “best” library models
on all but a few of the datasets. Although the computing time necessary was large, we
ran our classifier “out of the box™ and thus the human interaction time was really low.

It is definitely also worth noting that even in cases where performance of the ensemble
does not improve over the model library — you still get statistics on all the models in your
ensemble library. This is useful and interesting in and of itself. We foresee many
situations where people would want to see a ranked performance summary of how a
default set of Ensemble Selection classifiers did on their dataset.



(For a description of metric loss reduction that is listed in the “reduction” column in the
table below, please see section 5.2 of the Ensemble Selection paper.)

Error RMSE
Dataset Ens. Sel. Best | Reduction || Ens. Sel. Best | Reduction
breast-w 0.02 | 0.017143 0. 166657 01108 | 0.1241 0.107172
crodit-a 0101156 | 0101156 0 0.20976 | 08177 | 0.0632672
crodit-g 0. 266 0.27 0.0431655 04102 | 04253 | 0.0143428
diabetes 0197917 | 0.197917 0 03731 | 03797 | 0.0173821
kr-vs-kp 0020025 | 0.020651 1 00303133 0(.2435 0.197 -0 236041
mushroom || 0073363 | 0.082964 0.115725 0.2302 | 0.2701 0.114402
sick 0012725 | 0.012195 | -0.0454604 0.0092 101163 0.147054

Table 1: Performance of Ensemble Selection for binary-class classification problems. Ens. Sel. is
Ensemble Selection. Best is the best model from the ensemble library as chosen based on Validation
Set performance.

Error RMSE
Dataset Ens. Sel. Best Reduction || Ens. Sel. Best | Reduction
anneal 0002227 | 0006682 0666717 0.0339 | 0.0449 0.244989
Ly pothyroid 0008484 | 0.00R484 0 0.0602 | 0.0635 | 0.0519685
lettor 0.059667 | 0.089333 0.332083 00658 | 0.0726 | 0.0936639
segnent 0025974 | 0038095 0.318178 0.077 00918 0160131
soybean 0069767 | 0.119186 0.414638 01119 | 01143 | 0.0200974
vehicle 0. 205189 0.21934 00645163 0.2563 | 0.2825 | 0.0927434
vowel 0.412121 | 0456566 0.0973463 0.2217 | 0.2373 | 0.0657396
waveform-5000 (| 0.132694 | 0.131894 | 000606548 0.24G9 | 0.2512 | 0.0171178

Table 2: Performance of Ensemble Selection for multi-class classification problems. Ens. Sel. is
Ensemble Selection. Best is the best model from the ensemble library as chosen based on Validation
Sot performance.

The Ensemble Selection Algorithm
The basic algorithm can be briefly explained in two parts:

The first step is to create a “model library”. This library should be a large and diverse set
of classifiers with different parameters. To the best of our ability we throw the kitchen
sink at your data — the more the merrier. Keep in mind that it should not really hurt
performance to train “bad” models as they will simply not be chosen by the Ensemble
Selection algorithm if they hurt performance.

The second step is to combine models from your library with the Ensemble Selection
algorithm to. Although there are a lot of very complex refinements to prevent over
fitting, the basic idea behind the algorithm is simple. Basically, we start with the best
model from our whole library that did the best job on our validation set (held aside data).
At this point we have an ensemble with only one model in it. Then, we add models one
at a time



to our ensemble. To figure out which model to add, each time: separately average the
predictions of each model from the library currently being considered with the current
ensemble. Then choose the model that provided the most performance improvement.

The Over fitting Problem

This is a greedy hill climbing approach, and as previously mentioned has a lot of over
fitting problems (while performance on the validation set improves performance on the
test set degrades). To prevent the problems with over fitting, as described in the original
paper, we take advantage of three proven strategies: “model bagging”, “replacement”,
and “sort initialization”. For a more in depth description of these three methods, please

refer to the original paper.

Ensemble Selection: A Slightly More Technical Explanation (link to this
on a separate WIKI page)

Ensemble Selection is an ensemble learning method. The focus of the Ensemble
Selection learning algorithm is combining a large set of diverse models in to a high-
performance ensemble by determining appropriate weights for the models. The algorithm
was inspired by forward-stepwise feature selection, wherein features are added one at a
time to greedily improve performance of the model being trained. Here, we greedily add
models to our ensemble to optimize for some metric, such as accuracy. Initially, we add
the model which has the best performance on some validation data. Then, for some
number of iterations, we add the model which, when combined with the current set of
models, helps performance the most on the validation data. When we are done, we can
consider the number of times a model was added as its “weight”, and our ensemble makes
predictions by taking a weighted average over the chosen models.

Some other techniques are used to help performance and avoid over-fitting. One is sort-
initialization. The idea is to sort models by their performance, and add the best N
models, where N is the number of top models which optimize performance versus the
validation set. Another important strategy is model bagging. The idea here is to only
consider some random subset of the entire library of available models, for example half
(default), and run ensemble selection for that subset. This is done some number of times,
similarly to Breiman’s Bagging method, and the weights determined by Ensemble
Selection for each bag are added up to create the final Ensemble.

Ensemble Selection can be run using a set-aside validation set, or using cross-validation.
The cross-validation implemented in the EnsembleSelection classifier is a method
proposed by Caruana et al. called “embedded” cross-validation. Embedded cross-
validation is slightly different than typical cross-validation. In embedded cross
validation, as with standard cross validation, we divide up the training data in to n folds,



with separate training data and validation data for each fold. We then train each base
classifier configuration n times, once for each set of training data. We are then left with n
versions of each base classifier, and we combine them in EnsembleSelection in to what
we call a “model” (represented by the EnsembleSelectionLibraryModel class). Thus, a
model in EnsembleSelection is actually made up of n classifiers, one for each fold.

The concept of embedded cross-validation is to choose models for the ensemble. That is,
rather than being interested in the performance of a single trained classifier, we are
concerned with how well the model, or “base-classifier configuration” performed (based
on the performance of its constituent classifiers). Notice that for every instance in the
training set, there is one classifier for each model/configuration which was not trained on
that instance. Thus, to evaluate the performance of the model on that instance, we can
simply use the single classifier from that model which was not trained on the instance. In
this way, we can evaluate each model using the entire training set, since for every
instance in the training set and every model, we have a prediction which is not based on a
classifier that was trained with that instance. Since we can evaluate all the models in our
library on the entire training set, we can perform ensemble selection using the entire
training set for hill-climbing.

User Guide

As with all WEKA classifiers there are two ways to run Ensemble Selection: either from
the command line or from the GUIL. However, this classifier is slightly unique in a couple
of ways. First, it requires the additional first step of creating a model list file. This file
basically tells the algorithm which models you would like to train for your model library.
Second, the EnsembleSelection classifier requires you to specify a “working directory”
on a writable file system where it will be able to save models that it has trained for use in
building ensembles.

Building the model list

Whether you are going to run the Ensemble Selection algorithm from the command line
or from the GUI (e.g. Explorer), you are going to first need to create a model list. To do
this, you will need to use the Library Editor GUI that was made for this purpose, build a
model list and then save it to a .model.xml file.

We created this user interface to let us quickly build lists, akalibraries, of classifiersto be
trained. The design goal of this widget wasto lets us quickly throw together really long
lists of models that we will train for Ensemble Selection libraries. We want to be able to
take shortcuts like “build me every neura net with every possible value in this range of
learning rate values, and this range of momentum values, and both with and without the



nomina ToBinary filter turned on” and then BAM —you have alist of classifiers
consisting of every possible combinatoric combination of the parameter ranges specified.

You can bring up the Ensemble Library Editor by simply clicking on the
EnsembleSelection “library” attribute in the Explorer (highlighted below).

greedySortinitialization |True |"|

hillclimblterations [100 |

hillclimbMetric |Optimize with RMSE |

library |0 models selected

modelRatio [0.5

|
|
numFolds |1 |
|

numModelEags |10

Clicking the attribute will bring up the Model List editor which is a separate GUI
Window that consists of 4 tabbed panels. While the first panel displays all the models in
the current model list, the other three allow you to add models to this list.

[ Library List | Add Models | Add Default Set | Load Models

Model List Panel — This is the first panel that is responsible for displaying all models that
are currently in the model library. It also lets you save/load model lists in either xml
format (.model.xml) or as a simple flat file (.mlIf — recommended for logging purposes
only!).

Add Models Panel — lets you generate sets of models to add by specifying Classifiers and
ranges of parameters for them.

Add Default Set Panel- lets you add models from one of the Ensemble Selection default
lists

Load Models — Detects all of the .elm files in the working directory currently specified
for your Ensemble Selection classifier and builds a model containing all the models
found.

We tried to make these user interfaces as intuitive and simple as we could, so we think

you could probably just sort of jump in and figure them out by playing around. If you get
stuck, the following four sections describe these panels in more detail.

The Model List Panel



The first panel you will see is the “Library List” Panel (shown below). As the name
suggests, this tab simply shows you all the models that have currently been chosen to go
into your library list. Since you shouldn't have any models in your list at the beginning,
the list should be empty when it first comes up.

Library List | Add Models | Add Default Set Load Models |
Currently Chosen Library Models

‘ Remove Selected | Open... | Save..

From this panel you can also save/load model list files with the respective buttons at the
bottom which bring up standard file choosers.

==y~ P~ Yy yep—
Look In: ‘|j 2773_instances_331d1992 |v‘ E:E:IE

D 2006.03.18.10.42_10_models.model.xml

File Name: |2006.05.18.10.42_10_m0de|s.mude|.}{ml |

Files of Type: |><ML Library Files: *.library.xml |v|

‘ Open || Cancel |

While loading, the file chooser will only let you choose files with either the .model.xml
extension or the .mlf extension depending on which “files of type” is currently selected.



The Add Models Panel

OK, so lets add some models to our now empty library. First hit the “add models’ tab to
make a small working set. There are two parts of the add models panel. The top half
shows you all of the parameters for the current selected Classifier type. Thisiswhere
you specify value ranges and combinations. Try playing around with collapsing and
expanding the tree nodes. Also note that we created tool tips for all the parameters so if
you hold your mouse still over one for afew seconds, a comment describing it will pop
up. The bottom half shown you a current temporary working set from which you can add
modelsto themain “Library List” panel (above).

[ Library List |"Add Models | Add Default Set | Load Models |

o= binarySplits

o= confidenceFactor
o= debug

o minNumObj

o numFolds

o= reducedErrorPruning
o= savelnstanceData
o seed

o subtreeRaising

o unpruned

o= yseLaplace

Generate Models

Working Set of Mewly Generated Models

| Remove Selected Add Selected Add All

For numeric attributes, you can specify ranges. For example, with the neural net
classifier, the following saysto try al learning rates from 0.05 to 0.5 in increments of
0.05, which will give us 0.05, 0.10, 0.15, etc...

¢ learningRate
min: (0,05
iterator: 0.05
max: 0.5 |



Note that you can also define exponential ranges —that is, multiply by the iterator instead
of divide by theiterator to get each value in the range. Y ou can toggle this mode by
hitting the “+=" button. When you it will show “*=" instead. Asan example, for neural
nets its often useful to plot exponentially increasing ranges of training epochs. The
following would give the learning rate values of 500, 1000, 2000, 4000, and 8000.

¢ trainingTime

min: |500
iterator: z
max; |8,000

For nominal values (either an enumeration of values or binary true/false booleans) You
simply check the boxes of the values you wish to try.

Example of Binary Attribute (subtreeRaising in J48):

¢ subtreeRaising

True
[] False

Example of an Enumeration Attribute (distanceWeighting in IBK):

¢ distanceWeighting
Mo distance weighting

Weight by 1/distance

Weight ty 1-distance

Now lets see what happens when we generate models from our specified parameter
ranges. Consider the example below using the J48 classifier. We've specified 2 values
for binarySplits (true and false), 5 values for confidence factor (0.1, 0.2, 0.3, 0.4, and
0.5), and 5 values for minNumOXbj (1, 2, 4, 8, and 16). So we should get atotal of 50
models generated (2 x 5x 5).

When you have selected the appropriate parameter space up top, you hit the “generate
models’ button in the middle to generate and add all of the models into the temporary
working list on the bottom. Thisisascrollable list in which each row represents a model
(see below). To get more information about a model leave your mouse pointer over it to
see atool tip showing all the respective parameter values. Furthermore, “list like”



keyboard shortcuts also work: <ctrl>+awill select all modelsin the list and <delete> will
delete the models currently selected.

Y ou can prune this model list to your liking by selecting models from the list that you
don’t want and then hitting the “remove selected”. Once you are satisfied with the
working list and are ready to add them to the model library, you just hit the“Add all”
button and every model in the list will be added to the main panel. Also, you can prune
thislist by selecting a set of one or more models (<ctrl>+click or <shift>+click) and then
hitting the remove selected button.

[ Library List | Add Models | Add Default Set | Load Models |

¢ hinarySplits
True

False

¢ confidenceFactor

min: (2.1
iteratar: 0.1
max, 05 |

o= debug
¢ minNumoObj

min: |1 i
iteratar: 2
max: |16

Cnld

Generate Models | 50 models generated, 0 had errors

1]

Working Set of Mewly Generated Models

O trees 48 -C 0.1 -BE-M1 -
1: trees.]48 -C 0.1 -BE -M 16
Ztrees 48 -C 0.1 -B -M 2
3: trees. J48 -C 0.1 -B -M 4
4 trees 48 -C 0.1 -E-M 8 -4
3 trees. 48 -C 0.1 -M 1

6 trees |48 -C 0.1 -M 16

7 trees. J48 -C 0.1 -M 2

g trees 48 -C 0.1 -M 4

9 trees. ]48 -C 0.1 -M 8

10: trees. 48 -C 0.2 -E-M 1
11: trees. |48 -C 0.2 -E -M 16
12 trees 48 -C 0.2 -BE -M 2
13: trees.J48 -C 0.2 -B -M 4
14 trees, |48 -C 0.2 -E-M§

‘ Remove Selected | Add Selected | Add All |

1

It should be mentioned that it is possible to use the GUI to specify invalid values for
classifier parameters —in this case these models will appear highlighted. Y ou can use the
mouse tooltip to find out what the problem is (specifically what the exception text was



when trying to set the options for that particular model). For example, trying to specify a
value greater than 1 for the “ confidence value” parameter to J48 trees causes an
exception. Therefore, these models will be highlighted and holding the mouse pointer
over them will display the tooltip explaining why. If you want to remove all models that
had errors, just hit the “removeinvalid’ button. Also note that these won't get added to
the main panel —they’ll just beignored. Oh, and one other strange thing we've
encountered is that some classifiers will not throw an exception when given invalid input
but instead will just replace it with adefault value. So in these cases the invalid models
won't be highlighted - they simply won't appear in the list and a model with avalid value
will instead.

‘ Generate Models | 60 models generated, 12 had errors
Working Set of Mewly Generated Models

0 trees 48 -C 0.3 -BE-M1
¥itrees. ]J48 -C 0.4 -B -M 1
g trees 48 -C 05 -BE-M1
O trees. J48 -C 0.6 -B -M 1
1 trees. |48 -C 0.7000001 -BE-M 1
11: trees.]48 -C 0.8000001 -BE -M 1
12 trees.]48 -C 0.9000001 -B -M 1
13: trees. |48 -C 1.0000001 -BE -M 1
14: trees.]48 -C 1.1000001 -B -M 1 |
15: trees |48 -C 1.2000002 -BE -M 1 >

[ »

Finally, it should be mentioned that the tree list isrecursively defined. That is, a
classifier with a classifier as a parameter (i.e. some of the meta classifiers) will result in
that parameter having its own subtree of parameters just like theroot node. Try it. Select
the meta.Bagging classifier and experiment. Y ou can even create bags of bags of bags.
Although that is areally dumb ideaits nice to know the original Weka flexibility remains.
This allows powerful combinations. For example, consider the following: We are
wrapping a M8 classifier inside of two layers of meta classifiers. We can actually specify
parameter ranges on all three levels and it will generate all the possible combinations as
expected.

[ Library List | Add Models | Add Default Set | Load Models
meta FilteredClassifier §

¢ classifier

o= bagSizePercent
o calcOutOfEag
¢ classifier —

o= hinarySplits

o= confidenceFactor
o= debug

o minNumQObj

1]




This subtree behavior applies to any objects that are rendered by the GenericObjectEditor
—not just classifiers. Asan example, consider the BayesNet Classifier which has two
parameters, the estimator and search algorithm, which are custom objects specific to that
algorithm which have their own sets of parameters. So as another example, consider the
two arguments estimator and searchAlgorithm to a BayesNet. These are not classifiers
but since they use the GenericObjectEditor as a GUI, the LibraryEditor knows how to
grab their relevant information and display their sub-arguments within the classifier tree.

[ Library List | Add Models | Add Default Set | Load Models |

[ cnnuse | vves vt |_sore o | g

o EIFFile
o= debug
¢ estimator
? bayes net.estimate. simpleEstimataor Maore I
o alpha

¢ searchAlgorithm

? ba\,a'es.net.search.lncal.r(z |

&= initAsMaiveBayes |
o= markovBlanketClassifier |
q] [ I [+]

Add Default Set Panel

This panel is probably the right place to start if you just want to try out ensemble
selection with too much effort. It lets you choose models from an already existing model
list. All you have to do is select the list you want from the drop down list at the top. We
currently have two notable default lists: one targeting multi class and one targeting binary
class datasets. Note that it is normal for the GUI to freeze up for a little bit after selecting
one of these lists because they are quite large (>1000 models), and the GUI needs to
process and test each one to make sure that all the options are valid.

For a list to be selectable within this GUI it needs to

1) be listed in the weka/classifiers/meta/ensembleSelection/DefaultModels.props file

2) actually be located in the weka/classifiers/meta/ensembleSelection/ directory in the
classpath

You will also see near the top a drop down list labeled “Exclude models with large:
with the selectable options of “train time”, “test time”, and “file size”. This lets you
prune the default list by removing models that will take too much resources to train.
Once you select the resource you care about, you can hit the exclude button and the list
should shrink. The logic that determines which models get removed for each type of
resource (train time, test time, and file size) is based on a list of regular expressions that
can be found in the weka/classifiers/meta/ensembleSelection/DefaultModels.props file.



Currently, these lists of regular expressions are fairly basic e.g. IBk classifiers will get
removed for test time, MultilayerPerceptron will get removed for train time, etc...

[ Library List | Add Models | Add Default Set | Load Models

Select default set: large_multi_class b4 Reload set

Exclude models wy large [Train Time - Exclude

Working set of Default Library Models

253 lazy.lEk -K 99 -W 0 - A "weka.core.LinearhN - A weka.cor = |
254 lazy.lBEK -K. 99 -W 0 -1 - A "weka.core.LinearMNN - A welka.
255: meta.Eagging -P 100 -5 1 -1 100 - trees.DecisionStum
256: meta.Eagging -P 100 -5 1 -1100 -\ trees.]J48 -- -U -E
257: metaEagging -P 100 -5 1 -1 100 -\ trees.]J48 -- -U -E
258: metaEagging -P 100 -51 -1100 -\ trees.J48 - - - -M
259 meta.Bagqging -P 100 -5 1 -1100 -W trees.J48 -- -10 -M
260: meta.Eagging -P 100 -5 1 -1 100 -W trees.REFTree - - -h
261: miscHyperPipes

262: miscVFl -B 0.2

263: miscVFl -E 0.4

264: miscVFl -B 0.6

263: miscVFl -E 0.8

266: miscVFl -C -E 0.2

267: miscVFl -C -E 0.4

268: miscVFl -C -E 0.6

269: miscVFl -C -E 0.8

270: rules.ConjunctiveRule -N 3 -M 20 -P-1-51

271 rules.ConjunctiveRule -M 3 -M 2.0 -P -1 -51 -E

272 rules.ConjunctiveRule -N 3 -M 20 -P-1 -5 2

2?|3: ruIes.Cunjum:ti\teRulel—N 3-M20-P-1-52-E o
4 [ b

[4]

‘ Remove Selected | Add Selected | Add All |

Similar to the Add Models Panel you simply hit either “add all” or “add selected” to
move these models to the model library shown in the “list models” panel.

Load Models Panel

This GUI will automatically search the file system for .elm files in the currently selected
working directory and load them into a list. This is really just meant for convenience
assuming that you've already trained a library and would now like to build ensembles
with it.

It is important to note that the default behavior is to search ALL directories in your
current working directory. So if you've trained two different libraries with different
classifiers in your working directory the list that will appear in the load models panel will
be the union of both these model sets.

The “reload” set button will simply reload the list in case 1) you've changed your working
directory parameter or 2) the set of models in your directory has somehow changed.



| 'wekarguizEnsembleSetectionLibraryEditorren O

[ Library List | Add Models | Add Default Set | Load Models |

‘ Reload List |

Directory: fhome, boberto,weka- project; cluster, simpleEnsembl...
12 unique model descriptions found in 1 directories
Working Set of Loadable Models

: trees.J48 -5 -C 0.25 -BE -M 2

strees )48 -5 -C 023 -B-M 2 -A

: trees.J48 -5 -C 0.25 -M 2

strees )48 -5 -C 023 -M 2 -4

trees.]J48 -5 -C 0.5 -BE -M 2

strees )48 -5 -C 05 -BE-M2 -4

: trees.J48 -5 -C 0.5 -M 2

trees )48 -5 -C 0.5 -M 2 -A

: trees. J48 -0 -BE -M 2

O trees. 48 -U-BE -M 2 -4

10: trees.J48 -1 -M 2

11: trees J48 -1 -M 2 -4

=

Remove Selected Add Selected Add All

Choosing a Working Directory

The working directory is just a String argument to Ensemble Selection representing the
file path to your ensemble. While that seems pretty straightforward, there's a lot of
details about the “anatomy” of the working directory that aren't. This section will explain
the default behaviors surrounding this parameter, the file structure of a working directory,
and the naming conventions used.

As previously mentioned, in a typical run of Ensemble Selection you are going to want to
train a lot of models. So we assumed from the beginning that there was no way all of
them would fit in to system memory. To solve this problem, we assume that the user will
specify a “working directory” for the library models to be saved in. This gives our
classifier a place where it can serialize all of its library models to the file system along
with other information it needs to track which models were trained what sets of data.
Alternately, if you have already trained a library of models, then by specifying a working
directory you are telling EnsembleSelection where to look for the models it needs.

The following subsections explain the internals of the working directory.



Establishing the working directory

The first thing that the classifier does is establish the working directory by finding the
directory specified as the working directory.

If you specify a working directory that does not exist on the file system, it will be created
(assuming that its a well form file path, otherwise you get an exception).

If you do not specify a working directory, then EnsembleSelection will create a default
working directory in your home directory named “Ensemble-X", where X is the first
unused number between 1 and 999 that doesn't exist in a in your home directory. If you
already have directories named Ensemble-1 all the way to Ensemble-999 in your home
directory then you will get an exception, not to mention a lot of working directories!

Dataset Directories and Naming Conventions

The next thing that the classifier does at train time is to establish a directory in your
working directory that is specific to the set of instances it was given to train. For each set
of instances that you train in a working directory — a directory with a name unique to that
set of instances will be created.

To get the unique directory name for the train set, the checksum of the Instances.toString
() method is used to get a sequence of 8 alphanumeric characters. Note that the
Instances.toString() method returns the dataset in .arff format. The checksum is then
appended to the number of instances in the dataset.

For example, a typical directory name will be something like:
2391 instances_46778c6d

If it doesn't already exist, then the dataset directory gets created and the classifier begins
training all the classifiers that were specified in the model list argument. All of these
models are stored in the directory associated with the training dataset.

If the dataset directory already exists, then each model in the model list is created only if
it doesn't already exist in the dataset directory. Otherwise, each model is created and
stored in the directory.

At first, this checksum naming convention might seem strange, but it fulfills a very
important property. It makes sure that the models used to create an ensemble were
trained on the vary same data that was given to train its underlying library models. Since
we are allowing model libraries to be created separately from ensembles, we decided that
we needed some mechanism to enforce this. This is an important property!



Logging Files

It is also worth mentioning that at train time, the output of the Instances.toString() is
automatically saved in a file with the same name as the dataset directory but with the .arff
extension indicating it is the dataset file.

For example, in the 2391 i nst ances_46778c6d directory, we would find:
2391 instances_46778c6d. arff

That would store the specific set of instances used to train all models in that directory.
We thought this would be useful for logging purposes.

Also, the set of models that you attempted to train for the library will also be saved in this
directory in both the xml (.model.xml) and human readable flat file (.mlf) formats. These
lists will be saved with a file name reflecting the time training started along with the
number of models that were going to be trained.

For example, you would find model list files with names similar to this:
2006. 05. 18. 16. 34_1041 _nodel s. m f
2006. 05. 18. 16. 34_1041_nodel s. nodel . xm

Ensemble Library Model files (.elm extension)

The next thing to explain is the files used to stored our ensemble library models. What
we do is take the command line that would be used to normally train the library model
and turn it into a file name with four transformations. First, we turn all space and quote
() characters into underscore(_) characters to make things more readable. Second, for
filenames that would be greater than 128 characters, we trim the end off so they will
satisfy the 128 character limit of most operating systems. Third, we append a checksum
of the original model command line to guarantee that the file names are unique for each
model. fourth, we add the .elm file extension indicating the file is an Ensemble Library
Model file.

To summarize, the model represented by this command line string:
weka. cl assifiers.trees.J48 -C 0.25 -B -M

will be saved in a file with the name:

weka. classifiers.trees.J48 -C 0.25 -B -M 23bae0c94. el m



Note that the .elm files hold all models (one for each data fold) associated with a
particular classifier and associated set of parameters along with other information that
Ensemble Selection will need later on to build ensembles.

Lock Files

We created what we call “informal” lock files that are created before each library model
is trained and deleted after the model is finished training. Since these lock files
correspond to a specific model indicating that it is currently being worked on, they have
the same naming convention except they carry the .LCK file extension.

The .elm file in the previous example will have the lock file name:
weka. classifiers.trees.J48 -C 0.25 -B - M 23bae0c94. LCK

These are “informal” lock files we use for processes to say “hey, I'm working on that
model right now”. When training a list of models, EnsembleSelection will simply skip
any models in its list for which it detected a lock file. We do this for two reasons:

1 - This is nice when training libraries in parallel on clusters. Each node knows not to
train a model that has a .LCK file. These get deleted when the process is done training
the respective model.

2 - These files are also useful when training models on a single computer because they
also help you figure out which (if any) models didn't train. When EnsembleSelection
detects these .LCK it assumes that it shouldn't deal with the classifier and skips to the
next one in the list.

You may be wondering why we don't use real lock files (which java does support). Our
main reason is that we felt this would be overkill. The fact is that when training models
in parallel, we don't really need to enforce any guarantees that the .LCK files truly reflect
the current state of training. The worst case (which should be extremely rare) is that two
nodes would train the same model which isn't really all that bad. Furthermore,
implementing true file locks would have taken more time.

Ensemble Selection from the command line

We recommend training the library models as a separate step because it will make things
easier for debugging errors should something go wrong.

Step 1: Creating a model list file



Even though you are running Ensemble Selection from the command line, you still need
to create the model list file (.model.xml) file from the GUI. Follow the instructions in the
previous section about building model list files to do this. Once you've saved the model
list file, you will be specifying this file on the command line with the “-L.
path/to/your/mode/list/file.model.xml” option described below.

Step 2: Training the library

To build a library from the command line you need to use the “-A library” option to tell
Ensemble Selection that it shouldn't build any ensemble models and that you only want to
train the base classifiers.

WARNING! You should basically NEVER specify cross validation (CV) from the
command line with the -x option that is read by Evaluation.java. Ensemble Selection
fully supports cross validation but it is implemented very carefully to use validation data
to build ensembles. Instead, you should use the -X option to specify the number of folds.

Also, this may seem counter intuitive, but the “-no-cv -v” options are extremely
important since they prevent the Evaluation class from defaulting to 10 fold CV to try to
create a performance estimate. This is a lot of wasted CPU time since we are only
training a library and don't care about performance estimates. With Ensemble Selection,
you should always tell the classifier evaluation code not to perform cross validation
regardless of whether you are doing it for Ensemble Selection.

Finally, the “-V <validation ratio>" option is only meaningful when you do not specify a
number of cross validation folds greater than 1. If you are using CV, then validation sets
are generated automatically, otherwise if you have only one fold then the percentage
specified with the -V option will be held aside for validation.

The following is an example command line to build an ensemble library:

j ava weka. cl assifiers. nmeta. Ensenbl eSel ection -no-cv -v -L
pat h/to/ your/node/list/file.nmodel.xm -W/

pat h/to/ your/working/directory -Alibrary -X5 -S1-0-D -t
your Tr ai ni ngl nst ances. arff

Step 3: Building the Ensemble

Just like any WEKA classifier, you specify the file to save your model to with the -d flag
and the train instances with the -t flag. Note that these train instances should be the same
ones used in the previous step to train the library. In addition, the following options
given reflect most of the default values:

-10 model bags with a model ratio of 50% for each.



-using RMSE as the hill climbing metric while adding models
-using 100 iterations of the hill climbing algorithm to add models.
-using greedy sort initialization with 100% of the models.

-five fold cross validation is being used.

The following is an example command line to build and save an Ensemble Selection
model from an ensemble library:

java weka. classifiers. meta. Ensenbl eSel ection -no-cv -v -L

pat h/to/ your/mode/list/file.nmodel.xm -W/

pat h/to/ your/worki ng/directory -B 10 -P rnse -A forward -E 0.5 -H
100 -1 1.0 -X5-S1-G-0-R-D-d /path/to/your/nodel.nodel -t
your Tr ai ni ngl nst ances. arff

Step 4: Testing the Ensemble

Just like any WEKA classifier, you specify the file to load your model from with the -1
flag and the test instances with the -T flag. There's really nothing special to note here.

The following is an example command line to test an ensemble library:

java weka.classifiers. meta. Ensenbl eSel ecti on -no-cv -W/
pat h/to/ your/worki ng/directory -O -D -1 /path/to/your/nodel . nodel

-T yourTestingl nstances.arff -i -k

Ensemble Selection from the GUI

A Note on Memory Usage from the Explorer

Running Ensemble Selection from the explorer is only recommended for either building
model lists or playing around with small datasets. You will find that with a decent sized
model list on anything but the smallest datasets you will quickly run out of memory.

The main problem is the fact that the Evaluation code in WEKA asks classifiers to make
predictions one at a time instead of passing them all at once as a collection. We are not
criticizing this design choice. It's just that in our case it means that we had to implement
a small work around to make things acceptably efficient.

For ensemble Selection to work we need to average predictions for all our ensemble
models together. The original implementation did something like this:

For each nodel
Deserialize the nodel fromthe file system
For each Instance



CGet a prediction for the given instances
Gar bage coll ect the nodel

This wasn't to expensive. We could just load models from the file system on e at a time
and get all their test predictions, and then throw the model away. There's no need to keep
all the models in memory.

However, since Evaluation.java asks our classifier to make predictions on test instances
one at a time, we would be stuck doing something more like this:

For each Instance
For each nodel
Deserialize the nodel fromthe file system
Get a prediction for the given instances
Gar bage coll ect the nodel

This means that if you have 1000 test data points, you are going to have to deserialize
every ensemble model 1000 times! We felt this was unacceptable and decided to force
the classifier to keep all ensemble models in memory to prevent all the deserialization.

Furthermore, we implemented prediction caching in our main method where test
predictions for all ensemble models are cached before handing control over to
Evaluation.java. Unfortunately, this work around only works when invoking
EnsembleSelection from the command line. This is because in the Explorer, unlike our
main method there is no time when control is handed to our classifier with all the test
1nstances.

So to summarize, what all this means is that when training Ensemble Selection for
reasonably sized model lists on reasonably sized datasets, you should do it from the
command line (as described in the previous section) or you might get an out of memory
exception.

Otherwise, we think that the GUI is fine for sort of playing around to get a feel for how
ensemble selection works with small model lists (such as the “toylist.model.xml” in the
defaults panel).

Step 1: Specify the models to use

This is slightly different from the command line in that you don't specify the file. Simply
click on the library attribute in the Ensemble Selection property panel to bring up the
library editor. As mentioned in the previous section on the library Editor GUI, you can
either load an already existing list or just add some models to your library with one of the
the panels.

Step 2: Training the library



After typing in the name of your working directory and specifying the models for your
library, you just need to tell the classifier it is only training models. In the drop down
menu for algorithm on the Ensemble Selection Panel select “library” to indicate that you

WARNING! As described in the command line section, you should basically NEVER
specify cross validation (CV) from the Explorer Classifier testing GUI (Shown below).
Instead choose one of the other options as CV is prohibitively expensive from Ensemble
Selection just to get performance estimates.

Test options

) Use training set
) Supplied test set

® Cross-validation Folds |10
' Percentage split

More options...

Step 3: Building and Testing the Ensemble

These steps can be done just like they can with any other WEKA classifier. Just keep in
mind our warning about the out of memory errors and don't be afraid to try things from
the command line.

Overview of Classes used by EnsembleSelection

The implementation of EnsembleSelection and its library editor was a significant
undertaking. The following is a brief overview of the packages created to support the
classifier with a list of the class files stored in each. For more information, please see the
associated javadocs and code comments.

Package: weka.classifiers.meta

The actual classifier
weka. cl assi fiers. meta. Ensenbl eSel ection. java

Package: weka.classifiers
These are base classes we created so that others could use the basic “Ensemble Library”

functionality of the LibraryEditor GUI.
weka. cl assi fiers. Ensenbl eLi braryModel Conpar at or. j ava



weka. cl assi fiers. Ensenbl eLi braryModel . j ava
weka. cl assifiers. Ensenbl eLi brary. java

Package: weka.classifiers.meta.ensembleSelection
These classes support the main EnsembleSelection algorithm. There is also a properties
file and three model lists that are used to populate the default models panel in the library

editor GUI.

weka. cl assifiers. meta. ensenbl eSel ecti on. Ensenbl eMbdel M smat chExcept
ion.java

weka. cl assi fiers. neta. ensenbl eSel ecti on. Model Bag. j ava

weka. cl assi fiers. neta. ensenbl eSel ecti on. Ensenbl eMetri cHel per.java
weka. cl assi fiers. neta. ensenbl eSel ecti on. Ensenbl eSel ecti onLi brary.ja
va

weka. cl assi fiers. neta. ensenbl eSel ecti on. Ensenbl eSel ecti onLi br ar yMod
el .java

weka. cl assi fiers. neta. ensenbl eSel ecti on. Def aul t Mbdel s. props

weka. cl assifiers. neta. ensenbl eSel ection. | arge_binary_cl ass. nodel . xm
I

weka. cl assifiers. neta. ensenbl eSel ection.large_nulti_class. nodel . xm
weka. cl assifiers. neta. ensenbl eSel ection.toylist.nodel.xm

Package: weka.gui
EnsembleLibraryEditor is a base class we created so that others could use the basic
LibraryEditor GUI. We extend this class with EnsembleLibraryEditor to do more

specific EnsembleSelection things.
weka. gui . Ensenbl eLi braryEdi tor.j ava
weka. gui . Ensenbl eSel ecti onLi braryEditor. java

Package: weka.gui.ensembleLibraryEditor

These are classes implementing and supporting the panels in the Library Editor GUI.
weka. gui . ensenbl eLi braryEdi t or. Mbdel Li st.java

weka. gui . ensenbl eLi brar yEdi t or. AddMbdel sPanel . j ava

weka. gui . ensenbl eLi braryEdi t or. Li st Mbdel sPanel . j ava

weka. gui . ensenbl eLi brar yEdi t or. Def aul t Model sPanel . j ava

weka. gui . ensenbl eLi braryEdi t or. LoadMbdel sPanel . j ava

weka. gui . ensenbl eLi braryEdi tor. Li brarySeri alization.java

Package: weka.gui.ensembleLibraryEditor.tree

This entire package supports just the add models panel. Getting the neat Jree user
interface to work for building lists of classifiers was by far one of the greatest challenges
we faced. Most of these classes implement the functionality needed for asingle nodein

the tree.

weka. gui . ensenbl eLi braryEdi tor.tree. Generi cObj ect Node. j ava
weka. gui . ensenbl eLi braryEdi tor. tree. CheckBoxNodeEdi t or. j ava
weka. gui . ensenbl eLi braryEdi tor. tree. Model Tr eeNodeRender er. j ava
weka. gui . ensenbl eLi braryEdi tor. tree. Model TreeNodeEdi t or. j ava
weka. gui . ensenbl eLi braryEdi tor. tree. Def aul t Node. j ava

weka. gui . ensenbl eLi braryEdi t or. tree. CheckBoxNode. j ava



weka. gui . ensenbl eLi braryEdi tor. tree. Nunber Cl assNot FoundException.ja
va

weka. gui . ensenbl eLi braryEditor.tree. Generi cObj ect NodeEdi tor. j ava
weka. gui . ensenbl eLi braryEdi tor.tree. | nvalidl nput Exception.java
weka. gui . ensenbl eLi braryEdi tor. tree. Nunber NodeEdi t or. j ava

weka. gui . ensenbl eLi braryEdi t or. tree. Nunber Node. j ava

weka. gui . ensenbl eLi braryEdi tor.tree. PropertyNode. j ava

User FAQ

When is Ensemble Selection a good idea?

The interface allows for easy creation of a large set of classifiers with minimal (human)
effort usually providing state-of-the-art performance. Other competing methods such as
Bayesian Model Averaging and Stacking are known to over-fit with large libraries of
models. This has the capability of not just training many models, but evaluating their
performance on a test set (using EnsembleSelection.main() and the —V option).

When is ensemble selection a bad idea?

It's very time consuming, and takes a lot of memory. To train an ensemble library for a
reasonably sized dataset it will takes days to weeks of compute time. Also, at the end of
training your ensemble it is difficult or perhaps even impossible to intuitively understand
its mechanism — by that we mean the underlying logic your model uses to make
predictions. Whereas with something like a single tree classifier you can look at the
branches and validate/understand why it was built the way it was. With ensemble
selection, you have predictions averaged across hundreds of models which makes this
process difficult if not impossible.

Expensive eh? So is it possible to parallelize this?

If you have a cluster, we have successfully made the library training easily parallelizable,
(assuming your cluster nodes have a shared file system, e.g. NFS). All you have to do is
invoke the same command line line argument to train your ensemble library to all nodes
you wish to use to train your model library. Make sure that you specify the same path for
your working directory (which again should be remotely reachable by all of them) and



make sure to use the “-A library” option to tell them all to only train the library and not to
do anything else. Note that the step of using the library to then build an ensemble with
the Ensemble Selection algorithm is not currently parallelizable.

What if I just want to train a bunch of models and maybe find the best one without having
to deal with all this fancy Ensemble Selection model stuff?

We can do that too. Just use the “—A best” option. The ensemble will be made up of the
single model which performed best on the validation data. Furthermore, if you want to
get the performance of all the models with respect to the validation data, you can do this
as well using the “-V” (verboseOutput) option.

I got an out-of-memory error when using EnsembleSelection. What can I do?

Two things: 1) make sure you use the java —xm.... Option to increase the amount of
memory available to the JVM and 2) If you got the error from the GUI, try it again from
the command-line. For an explanation of the Memory Usage problems in the explorer
please see the User Guide section about this.

Why do I need a working directory? Can’t I keep them in memory?

No, that takes too much memory. Ensemble Selection is designed for very large libraries
of models (e.g. > 1,000), and so in most real-world situations, the model library could not
possibly be held in memory.

I don’t know which models to use. Are there default lists of models I can use?

Yes. This was high on our list when we first got started building this classifier, we
wanted people to be able to choose from reasonable default model lists. Just fire up the
LibraryEditor and click on the “default models” tab to see a few default lists.

I want to try different models than in the default list. Can I do that?
Yes, go check out the Add Models Panel section in the user guide.
I noticed two types of model list files .mlf and .model.xml - what's the deal?

Originally, we thought it would be easiest to make the model list files be a simple flat file
with a different Classifier + set of options on each line. It turns out this has many
problems (getOptions and setOptions do not necessarily interact properly or even fully
represent the associated classifiers). These are the model list files with the “.mlf”
extension. Later we adopted an xml file schema that works great but doesn't have the
nice simplicity/human readableness of the old .mlf files. These xml model files have the .



model.xml extension. Anyway, we've had great success with the new format and we
recommend you use this extension instead of the .mlf's.

Can I use the same workspace directory to train models for two different problems? Two
different partitions of the data for the same problem? Two different model lists?

Yes, yes, yes. See the section describing the dataset/checksum naming convention.
I got an EnsembleModelMismatchException, what does that mean?

This is a tough one. Basically, we track all of the dataset information that was used to
create each model. This is because we want to protect users from doing foreseeably bad
things. e.g., trying to build an ensemble for a dataset with models that were trained on
the wrong partitioning of the dataset. This could lead to artificially high performance due
to the fact that instances used for the test set to gauge performance could have
accidentally been used to train the base classifiers. So in a nutshell, we are preventing
people from unintentionally "cheating" by enforcing that the seed, #folds, validation
ration, and the checksum of the Instances.toString() method ALL match exactly. If you
try to build an ensemble and one of its models was not trained with all of these same
parameter values, then we throw that specific exception.

Why did the load models tab in the LibraryEditor show me all the models I trained for a
bunch of different datasets — that were in different directories?

Yes, it can be confusing, but the load models tab is populated by all models in
subdirectories of the working directory. (This is out of necessity, because at the time we
populate it, we don’t know what dataset you’re using).

Is it possible to modify mylist.model.xml by hand or with a script?

Theoretically yes, in practice, no — do so at your own risk. We highly recommend using
the list editor GUI instead. The .mlf files may be edited by hand, but as noted elsewhere,
not all classifiers can be properly configured using command-line options.

How do I specify the models for EnsembleSelection to use from the command-line?

Use the —L option, and provide a “.model.xml” file. You can create a “.model.xml” file
using the Library Editor (see the user’s guide for more detail). It is also possible to use a

file in “.mlf” format, which is simply a list of classifiers and options for them.

So I made a bunch of models. How do I know specifically what data they were trained
on?



Every time you train a library, we write out a .arff file in the respective instances
directory containing all of the instances used to train that set of models. It's named based
on the data and number of instances. Convenient, no?

So I made a bunch of models. How do I know what models were in the library at train
time?

For logging purposes, we also write out both a .model.xml and .mlf file at train time of all
the models you are attempting to train.

What happens if not all of my models train... i.e., throw an exception for whatever
reason?

This is actually not a matter of if, it's a matter of when. Not all models can use all data
sets. lately though, we trap most exceptions and throw models that didn't train out of the
ensemble. Most of the time this works and we’re okay. However, if we ran out of
memory, this could still kill the process no matter how much errors we trap. Sometimes,
you just have to figure out which model(s) are gumming up the works and manually
remove them from the model list. Although in our experience this isn't too often.

Hey, I have a bunch of existing Weka models, and I'd like to make an Ensemble out of
them. Can I do that?

Sorry, currently not supported. Would be a great future addition though.

Hey, I just ran EnsembleSelection to find the “Best Model”, and now I want to save that
model for later use.

Sorry, can’t do that either. It'skind of ahack, but what you can do is build an Ensemble
of only the best model (-A best). Thiswill give you an EnsembleSelection classifier to

classify future instances. Ultimately though, we think that there should be a mechanism
to extract the actual models from our .elm files.

Why is there a separate list for binary vs multi class problems in the default list panel in
the LibraryEditor? 1 thought all Weka classifiers worked for either?

There are some models that don't scale well for multi class problems. Models such as
SVM's (functions.SMO), have train + test times that increase exponentially with the
number of classes for a problem. We've observed classifiers which took 15 minutes to
train on a binary problem took over 8 hours to train on a multi class problem, while other
classifiers in the library did not have the same increase. So we felt the best approach
would be do maintain two separate default model lists. One for multi class and one for
binary.



Is it okay for me to combine training the library of models and the EnsembleSelection in
one step?

Yes, that’s fine — but doesn’t allow for parallelization. Also — separating the steps can
make things easier for debugging.

What’s with the crazy letters and numbers in my .elm files and the subdirectories of my
working directory?

See the section on file naming and checksums in the “Working Directory”.

Can I use a trained a EnsembleSelection classifier for new data after the ensemble is
built?

Yes, just use the .model file like you would any saved WEKA classifier. However, it
must have access to the models it selected, which are saved in separate .elm files. The
directory where they can be found can be specified using the —W option.

How does cross validation work in EnsembleSelection?

That's a doozey...

(note: this is just copied and pasted from above) Ensemble Selection can be
run using a set-aside validation set, or using cross-validation. The cross-
validation implemented in the EnsembleSelection classifier is a method
proposed by Caruana et al. called “embedded” cross-validation. Embedded
cross-validation is slightly different than typical cross-validation. In
embedded cross validation, as with standard cross validation, we divide up the
training data in to n folds, with separate training data and validation data for
each fold. We then train each base classifier configuration n times, once for
each set of training data. We are then left with n versions of each base
classifier, and we combine them in EnsembleSelection in to what we call a
“model” (represented by the EnsembleSelectionLibraryModel class). Thus, a
model in EnsembleSelection is actually made up of n classifiers, one for each
fold.

The concept of embedded cross-validation is to choose models for the
ensemble. That is, rather than being interested in the performance of a single
trained classifier, we are concerned with how well the model, or “base-
classifier configuration” performed (based on the performance of its
constituent classifiers). Notice that for every instance in the training set, there
is one classifier for each model/configuration which was not trained on that
instance. Thus, to evaluate the performance of the model on that instance, we



can simply use the single classifier from that model which was not trained on
the instance. In this way, we can evaluate each model using the entire training
set, since for every instance in the training set and every model, we have a
prediction which is not based on a classifier that was trained with that
instance. Since we can evaluate all the models in our library on the entire
training set, we can perform ensemble selection using the entire training set
for hill-climbing.

I noticed that some of my models appeared red in the Library Editor. What does that
mean?

When our LibraryEditor dynamically generates a bunch of models from the parameter
ranges you specify in the “addModels” panel, it tries to instantiate each classifier to see of
the given set of parameters is valid. If it traps an error for a set of parameters then it flags
that classifier as Red. Note that you don't have to manually remove these invalid models
from the temp list. When you add models to the main library list, the invalid ones will be
automatically removed.

Can I use the Library Editor to define parameter ranges for both meta-classifiers and
their base classifiers, simultaneously at the same time?

YES! The Classifier tree in the AddModels panel is recursive which lets you do all sorts
of crazy powerful things. You can use multiple layers of meta classifiers and set
parameter ranges across each layer and it will generate all the possible combinations. But
watch out or you'll end up with extremely huge lists. This was tough to implement but
we think it was worth it.

I have two slightly different model lists that are REALLY long. Is there any easy way to
know the difference between the two without staring at them both forever?

Save both lists as flat files from the Library Editor (the .mlf format), and then just use the
diff command line tool.

Can I modify the default model lists that appear in the Default List Panel? Alternately,
can I just add a default list of my own?

Yes and yes. The model lists are found in the weka/classifiers/meta/ensembleSelection
directory of the WEKA classpath. You can modify the model lists there. To add a list,
just add it to the appropriate line in the DefaultModels.props file found in that directory
and then just drop your list into that directory. Note: this requires that you unjar your
weka.jar file if you are using a jar file.

Can I modify the regular expressions used to prune the model list in the default model list
panel?



Yes, these regular expressions are found in the DefaultModels.props. Also, if you make
changes to these that seem reasonable enough to be rolled back in as defaults, please
share them with us as refining these properties is on our list of improvements to make.

Developer - FAQ

Why the long prediction caching main method in the EnsembleSelection? are you guys
crazy?

Yes, we are crazy! But not because of the prediction caching thing. We cache
predictions in the main method so that we can achieve reasonable speed and memory
even with a large ensemble.

Our main problem is that Evaluation.evaluateModel() only gives us one instance at a
time. The cost of deserializing every one of our models from the file system for each and
EVERY testing instance means that 1) your hard drive will be given a thorough workout
and 2) test time will take thousands and millions of years.

It's a little hackish but what we do is cache all the test predictions from all of our models
first before handing control to Evaluation. So when evaluation hands us instances one at
a time, we already have the answers. When this is not run from the command line and
EnsembleSelection is run from the GUI, we get around this by keeping ALL of our
library models in memory — which is why we run out of memory from the command line
so often.

The only way we could get away without doing this is if Evaluation passed all the
instances to us at once instead of one at a time. However, this does not seem realistic as
it would require significantly changing the rest of WEKA. So while this does seem
slightly hackish, it does work well.

So why didn't you just make the Model List a string argument to a file and the
LibraryEditor a separate GUI?

The closest thing we could find to what we wanted to do with the Library Editor was the
Cost Matrix Editor used for classifiers like MetaCost. As much as possible, we wanted to
do things the “WEKA” way so we followed this classifier/editor pair as a design pattern
and it seemed to work well. We were just trying to follow the precedent.

Why did you declare the LibraryEditor class a part of weka.gui package? Shouldn't it be
somewhere in a subpackage associated with the Ensembl eSel ection algorithm?

We did initially, and then it occurred to us that pieces of our LibraryEditor interface could
be useful elsewhere. If someone else would like to use the neat classifier-parameter tree



GUI, they can. So what we did was actually make a base class LibraryEditor that has all
the functionality we thought other people might want, an then extended it with the
EnsembleLibraryEditor that has all the specific EnsembleSelection stuff we need.

What is going on with the Ensemblelibrary and EnsembleLibraryModel classes. These
seem sort of pointless. Why not just use an Array of Classifier[] instead of messing
around with a bunch of extra wrapper classes?

Two reasons. First, we have to be careful about memory. As previously discussed, when
creating ensemble model s we could be dealing with thousands or possibly tens of
thousands of models. Each instantiation of these models could potentially take up alot of
memory. So we created awrapper class that contains only the information necessary and
useful for building lists of classifiers while making sure that the actual instantiations of
the classifiers are garbage collected when they need to be.

Second, we are actually extending all of these base classes (respectively called
EnsembleSelectionLibrary and EnsembleSelectionLibraryModel) to do much more work
for us with our implementation of Ensemble Selection. So while these two classes might
seem a tad simple and unnecessary — they are actually very important base classes that are
laying the foundation for the EnsembleLibrary and EnsembleLibraryModel classes.

Why do you have those strange static methods at the end of the LibraryEditor class?

Basically, this is a hack. Our problem is that we need to access some weka.gui classes
such as PropertyPanel, PropertyText, CostMatrixEditor, etc... and all of these classes in
weka.gui are not declared public. The only alternative I could think of to having these
seemingly out of place static methods was to throw all of our classes into the weka.gui
package as well — it seemed like that would clutter things up too much so I went the static
method route.

So I just implemented a bunch of methods that check for the class types of the numbers,
caste them to whatever actual class they are, performs the desired arithmetic operation,
and then returns the result. I'm sure there's got to be a much better way to do this — please
let me know if you can think of one.

Known issues
There are a few outstanding bugs/issues

Using the GUI (e.g. Explorer) you will run out of memory on reasonably large
datasets or model lists. Please see the User guide section on memory usage problems
when running from the GUIL. We currently don't know if our workaround that is only



available from the command line is sufficient or of there's some other solution we could
implement. For know, we are going to list this as an open issue.

Currently don’t do bounds checking on all values. Sorry! Stick with defaults or use
reasonable values somewhere around the defaults and you’ll be fine.

Phantom default models. When you don’t specify any models in the GUI
LibraryEditor, our classifier just defaults to 10 REPTrees with different Seeds. The
problem is that these 10 RepTrees get added outside of the GUI interface and won't show
up in the LibraryEditor. So the problem is that if you train an Ensemble in the Explorer
with no specified models 10 REPTrees will be added to the library. After training, these
10 models will be in the library but won't show up in the Model List GUI. This is a
relatively smallish bug. Not sure of the best way to select a default list. Perhaps we
should force the user to select some default set before training?

Intermittent StateExceptions in the Library Editor when editing model lists. This
exception gets raised occasionally from the LibraryEditor GUI. We are not sure what the
cause or the fix is. However, this exception seems to be benign and can safely be ignored.
Perhaps it should just be trapped and thrown away?

When using -V (verbose) option to get individual model performance on the
validation set, the output is kind of ugly, and when RMSE is used, we actually
display (1-RMSE).

The .mlf format for model lists is dangerous. First of all, not all models support their
command-line arguments properly. Secondly, the current implementation within
EnsembleSelection for turning a classifier and its options in String format in to the actual
classifier may have some problems handling things like nested options for meta
classifiers wrapping meta classifiers wrapping base classifiers — somewhere in there
things can become jumbled. For these reasons, we think it might make sense to force
users to use only the .model.xml format.

Future Enhancements and other Desirable Improvements

The following is a prioritized wish list of future enhancements to our implementation of
Ensemble Selection in ranking order of desirability.

Library Models should be saved separately: One option would be to store every
Model in n+1 files, where we’re using n-fold cross validation. One file would be the
“.elm” file, somewhat like we have now, which would contain important information
such as cached predictions for that model, the number of folds, training data hash,
random seed, etc. But the classifiers themselves would be saved in separate “.model”
files, with automatically-generated names (e.g. foo.fold1.model, foo.fold2.model, etc...).
This would allow easy exporting of trained models, because they’d simply already exist



in the correct format in the working directory. Furthermore, in some cases this could
speed up the performance of EnsembleSelection, because in many cases it would not have
to load the Classifiers themselves in order to train the ensemble, where currently it does.

Our multi-class and binary-class lists need to be refined. Currently, the
approximately 1000 modes in the multi class and 1400 models in the binary class default
model lists were sort of thrown together as a first attempt. To our knowledge, no one has
tried to do anything like this before — creating a comprehensive list of Classifiers +
parameter ranges that will give you a half-way decent coverage of the model diversity
available in WEKA. These two lists that you will find in the Default models panel are
based on parameter ranges used in the original paper on Ensemble Selection for most of
the same base classifier types. In addition we also added a fair number of WEKA
classifiers that seemed to “behave” well on a large number of UCI problems. We think
this is a good start, but only that: a start. These lists need to evolve and improve in order
to provide the best coverage we can of the model space available from WEKA.

Refine DefaultModels.props regular expressions. The regular expressions specifying
models with large train times, model sizes, and test times in the Default.props file is
currently a sort of a place-holder. The regular expressions currently used to define which
models should be removed for large train times, etc... are based on some ad-hoc
observations. However, it would be nice to be a little more specific and perhaps base
these values on something a little more concrete. Originally we planned on plotting the
train times, test times, and file sizes for models across a large number of problems in the
UCI datasets and then adding.

Metric calculation is slow. We could implement the calculation of metrics separately
from Evaluation, and probably see significant speedup. (Evaluation updates everything
every time a model is evaluated on an instance)

Could handle prediction caching more efficiently - Currently, cache prediction for
each model/base-classifier. Could just cache the current prediction of EnsembleSelection
itself.

Make prediction caching an option. Currently no choice in the matter, might get too
big.

MismatchExcpetions can be confusing. If you use the same dataset for two runs and
specify the same working directory, but specify a different #folds or validationRatio
you'll get a Model mismatch exception, and rightly so. However, people might get
confused about this. Perhaps, a solution to this would be to

Integrate Calibration and other filters. Possible to do filters now, but we could make
it easier in the GUI. Also, some preliminary work has shown that calibrating ensemble



library models (with something like Platt's method) has been shown to clearly improve
performance. This was actually on our original list of desired features but unfortunately
we weren't able to add this due to time constraints.

Custom serialization is currently not implemented for Ensemble Library Models.
for EnsembleSelectionLibraryModels so that trained models could be forward/backward
compatible across different versions with minimal headaches.

Making a self-contained EnsembleSelection model. Currently, you must have a
directory containing all the EnsembleLibraryModels that an EnsembleSelection classifier
uses available to it for it to work.

Allow users to import existing WEKA models as Library Models. We're on the fence
as to whether this would be a desirable feature as it would circumvent a lot of our error
checking in training library models models “safely” on the same data intended for the
Ensemble. However, surely some would find it convenient.



