public class RnnTextFilesEmbeddingInstanceIterator extends RnnTextEmbeddingInstanceIterator
Assumes the instance object has the following two attributes:
wordVectors| Constructor and Description |
|---|
RnnTextFilesEmbeddingInstanceIterator() |
| Modifier and Type | Method and Description |
|---|---|
org.nd4j.linalg.dataset.api.iterator.DataSetIterator |
getDataSetIterator(weka.core.Instances data,
int seed,
int batchSize)
Returns the actual iterator.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
org.deeplearning4j.iterator.LabeledSentenceProvider |
getSentenceProvider(weka.core.Instances data)
Create a sentence provider from the given data.
|
java.io.File |
getTextsLocation() |
java.lang.String |
globalInfo() |
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setTextsLocation(java.io.File textsLocation) |
void |
validate(weka.core.Instances data)
Validates the input dataset
|
initializegetStopwords, getTokenizerFactory, getTokenPreProcess, getTruncateLength, getWordVectorLocation, getWordVectors, initWordVectors, setStopwords, setTokenizerFactory, setTokenPreProcess, setTruncateLength, setWordVectorLocation, setWordVectorsgetDataSetIterator, getTrainBatchSize, setTrainBatchSizepublic RnnTextFilesEmbeddingInstanceIterator()
public org.nd4j.linalg.dataset.api.iterator.DataSetIterator getDataSetIterator(weka.core.Instances data,
int seed,
int batchSize)
throws InvalidInputDataException,
java.io.IOException
RnnTextEmbeddingInstanceIteratorgetDataSetIterator in class RnnTextEmbeddingInstanceIteratordata - the dataset to useseed - the seed for the random number generatorbatchSize - the batch size to useInvalidInputDataExceptionjava.io.IOExceptionpublic org.deeplearning4j.iterator.LabeledSentenceProvider getSentenceProvider(weka.core.Instances data)
AbstractTextEmbeddingIteratorgetSentenceProvider in class AbstractTextEmbeddingIteratordata - Datapublic void validate(weka.core.Instances data)
throws InvalidInputDataException
validate in class RnnTextEmbeddingInstanceIteratordata - the input datasetInvalidInputDataException - if validation is unsuccessful@OptionMetadata(displayName="directory of text files",
description="The directory containing the text files (default = user home).",
commandLineParamName="textsLocation",
commandLineParamSynopsis="-textsLocation <string>",
displayOrder=3)
public java.io.File getTextsLocation()
public void setTextsLocation(java.io.File textsLocation)
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class RnnTextEmbeddingInstanceIteratorpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class RnnTextEmbeddingInstanceIteratorpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
setOptions in interface weka.core.OptionHandlersetOptions in class RnnTextEmbeddingInstanceIteratoroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String globalInfo()
globalInfo in class RnnTextEmbeddingInstanceIterator