Skip navigation links
A B C D E F G H I K L M N O P R S T U V W X Z 

A

AbstractCNNSaliencyMapGenerator - Class in weka.dl4j.interpretability
Generic class for a saliency map generator.
AbstractCNNSaliencyMapGenerator() - Constructor for class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
AbstractCNNSaliencyMapWrapper - Class in weka.dl4j.interpretability
WEKA Wrapper for a Saliency Map Generator (e.g., ScoreCAM).
AbstractCNNSaliencyMapWrapper() - Constructor for class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
AbstractDropout<T extends org.deeplearning4j.nn.conf.dropout.IDropout> - Class in weka.dl4j.dropout
Abstract dropout class.
AbstractDropout() - Constructor for class weka.dl4j.dropout.AbstractDropout
 
AbstractInstanceIterator - Class in weka.dl4j.iterators.instance
An abstract iterator that wraps DataSetIterators around Weka Instances.
AbstractInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.AbstractInstanceIterator
 
AbstractProgressBar - Class in weka.core.progress
Handles common tasks between the GUI and Command line progress bar.
AbstractProgressBar(double, String) - Constructor for class weka.core.progress.AbstractProgressBar
Create a new progress bar.
AbstractSequenceInstanceIterator - Class in weka.dl4j.iterators.instance.sequence
Marker class to differentiate between iterators for Dl4jMlpClassifier and RnnSequenceClassifier.
AbstractSequenceInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.AbstractSequenceInstanceIterator
 
AbstractTextEmbeddingIterator - Class in weka.dl4j.iterators.instance.sequence.text
Abstract text iterator that provides variables and methods for text processing.
AbstractTextEmbeddingIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
AbstractWeightNoise<T extends org.deeplearning4j.nn.conf.weightnoise.IWeightNoise> - Class in weka.dl4j.weightnoise
Abstract weight noise class.
AbstractWeightNoise() - Constructor for class weka.dl4j.weightnoise.AbstractWeightNoise
 
AbstractZooModel - Class in weka.dl4j.zoo
This class contains the logic necessary to load the pretrained weights for a given zoo model It also handles the addition/removal of output layers to enable training the model in DL4J.
AbstractZooModel() - Constructor for class weka.dl4j.zoo.AbstractZooModel
 
Activation<T extends org.nd4j.linalg.activations.IActivation> - Class in weka.dl4j.activations
Abstract activation class
Activation() - Constructor for class weka.dl4j.activations.Activation
 
ActivationCube - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationCube that implements WEKA option handling.
ActivationCube() - Constructor for class weka.dl4j.activations.ActivationCube
 
ActivationELU - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationELU that implements WEKA option handling.
ActivationELU() - Constructor for class weka.dl4j.activations.ActivationELU
 
ActivationHardSigmoid - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationHardSigmoid that implements WEKA option handling.
ActivationHardSigmoid() - Constructor for class weka.dl4j.activations.ActivationHardSigmoid
 
ActivationHardTanH - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationHardTanH that implements WEKA option handling.
ActivationHardTanH() - Constructor for class weka.dl4j.activations.ActivationHardTanH
 
ActivationIdentity - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationIdentity that implements WEKA option handling.
ActivationIdentity() - Constructor for class weka.dl4j.activations.ActivationIdentity
 
ActivationLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's ActivationLayer layer that implements WEKA option handling.
ActivationLayer() - Constructor for class weka.dl4j.layers.ActivationLayer
Constructor for setting some defaults.
ActivationLReLU - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationLReLU that implements WEKA option handling.
ActivationLReLU() - Constructor for class weka.dl4j.activations.ActivationLReLU
 
ActivationRationalTanh - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationRationalTanh that implements WEKA option handling.
ActivationRationalTanh() - Constructor for class weka.dl4j.activations.ActivationRationalTanh
 
ActivationReLU - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationReLU that implements WEKA option handling.
ActivationReLU() - Constructor for class weka.dl4j.activations.ActivationReLU
 
ActivationRReLU - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationRReLU that implements WEKA option handling.
ActivationRReLU() - Constructor for class weka.dl4j.activations.ActivationRReLU
 
ActivationSigmoid - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSigmoid that implements WEKA option handling.
ActivationSigmoid() - Constructor for class weka.dl4j.activations.ActivationSigmoid
 
ActivationSoftmax - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSoftmax that implements WEKA option handling.
ActivationSoftmax() - Constructor for class weka.dl4j.activations.ActivationSoftmax
 
ActivationSoftPlus - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSoftPlus that implements WEKA option handling.
ActivationSoftPlus() - Constructor for class weka.dl4j.activations.ActivationSoftPlus
 
ActivationSoftSign - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSoftSign that implements WEKA option handling.
ActivationSoftSign() - Constructor for class weka.dl4j.activations.ActivationSoftSign
 
ActivationSwish - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSwish that implements WEKA option handling.
ActivationSwish() - Constructor for class weka.dl4j.activations.ActivationSwish
 
ActivationTanH - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationTanH that implements WEKA option handling.
ActivationTanH() - Constructor for class weka.dl4j.activations.ActivationTanH
 
AdaDelta - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's AdaDelta.
AdaDelta() - Constructor for class weka.dl4j.updater.AdaDelta
 
AdaGrad - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's AdaGrad.
AdaGrad() - Constructor for class weka.dl4j.updater.AdaGrad
 
Adam - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's Adam.
Adam() - Constructor for class weka.dl4j.updater.Adam
 
AdaMax - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's AdaMax.
AdaMax() - Constructor for class weka.dl4j.updater.AdaMax
 
addIterationIncrementListener(IterationIncrementListener) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
Add an event listener to the iterations increment event.
addIterationsFinishedListeners(IterationsFinishedListener) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
Add an event listener to the iterations finished event.
addIterationsStartedListener(IterationsStartedListener) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
Add an event listener to the iterations started event.
addTransformationLayerName(String) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
Adds a new transformation layer for the filter to use.
AlgoMode - Enum in weka.dl4j.enums
Proxy Enum for ConvolutionMode.
allLabels() - Method in class weka.dl4j.iterators.provider.FileLabeledSentenceProvider
 
allowAccessToFullInputFormat() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
AlphaDropout - Class in weka.dl4j.dropout
Gaussian dropout implementation.
AlphaDropout() - Constructor for class weka.dl4j.dropout.AlphaDropout
 
ApiWrapper<T> - Interface in weka.dl4j
A general interface to access a backend object of a certain deeplearning4j class which is wrapped in a class to make it usable in weka.
ApiWrapperUtil - Class in weka.dl4j
This utility class manages loading the appropriate wrapping class for a given backend object
ApiWrapperUtil() - Constructor for class weka.dl4j.ApiWrapperUtil
 
appendClasses(INDArray, Instances) - Static method in class weka.dl4j.Utils
Appends the input Instances classes to the INDArray.
apply() - Method in class weka.core.LogConfiguration
Apply the logging configuration.
ArffMetaDataLabelGenerator - Class in weka.dl4j
A LabelGenerator based on the file path in the Arff-Meta dataset
ArffMetaDataLabelGenerator(Instances, String) - Constructor for class weka.dl4j.ArffMetaDataLabelGenerator
Default constructor which sets the metaData
arithmeticUnderflow(INDArray) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Checks the array (as output from ComputationGraph.outputSingle()) for arithmetic underflow
asyncSupported() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Whether the iterator can be used asynchronously.
asyncSupported() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
asyncSupported() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 

B

batch() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
The size of the mini batches.
batch() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
batch() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
BatchNormalization - Class in weka.dl4j.layers
A version of DeepLearning4j's BatchNormalization layer that implements WEKA option handling.
BatchNormalization() - Constructor for class weka.dl4j.layers.BatchNormalization
Constructor for setting some defaults.
BinomialDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's BinomialDistribution that implements WEKA option handling.
BinomialDistribution() - Constructor for class weka.dl4j.distribution.BinomialDistribution
 
BroadcastLambdaLayer - Class in weka.dl4j.layers
A WEKA option handler class for the CustomBroadcast layer, required to use EfficientNet.
BroadcastLambdaLayer() - Constructor for class weka.dl4j.layers.BroadcastLambdaLayer
Constructor for setting some defaults.
build() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator.Builder
Build the iterator.
buildClassifier(Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
The method used to train the classifier.
Builder() - Constructor for class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator.Builder
 
builder() - Method in class weka.dl4j.NeuralNetConfiguration
Deliver access to the internal builder

C

CacheMode - Enum in weka.dl4j.enums
Cache modes for datasetiterators.
call() - Method in interface weka.dl4j.VoidCallable
 
CenterLossOutputLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's CenterLossOutputLayer layer that implements WEKA option handling.
CenterLossOutputLayer() - Constructor for class weka.dl4j.layers.CenterLossOutputLayer
Constructor for setting some defaults.
CharacterNGramTokenizerFactory - Class in weka.dl4j.text.tokenization.tokenizer.factory
A DeepLearning4j's TokenizerFactory interface for Weka core tokenizers.
CharacterNGramTokenizerFactory() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
 
CharacterNGramTokenizerFactoryImpl - Class in weka.dl4j.text.tokenization.tokenizer.factory.impl
A DeepLearning4j's TokenizerFactory interface for Weka core tokenizers.
CharacterNGramTokenizerFactoryImpl() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
check() - Method in class weka.dl4j.IsGPUAvailable
Main Entrypoint: Check whether WekaDeeplearning4j can detect a GPU backend.
checkArgs() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Check the arguments for the explorer.
checkIfRunByGUI() - Method in class weka.core.progress.ProgressManager
Checks the stacktrace for a call to anything in the weka.gui package.
Checksums - Static variable in class weka.dl4j.zoo.keras.KerasConstants
Checksums of model files.
ClassmapType - Enum in weka.dl4j.inference
Built-in class maps for WDL4J.
ClassSelector - Class in weka.gui.explorer
Class selector panel.
ClassSelector(JPanel, String[]) - Constructor for class weka.gui.explorer.ClassSelector
Init the ClassSelector panel.
clearTransformationLayers() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
Clear the transformation layers to be used by the filter.
clone() - Method in class weka.dl4j.schedules.ConstantSchedule.ConstantScheduleImpl
 
CnnSentenceDataSetIterator - Class in weka.dl4j.iterators.dataset.sequence.text.cnn
CnnSentenceDataSetIterator extension to Deeplearning4j implementation.
CnnSentenceDataSetIterator.Builder - Class in weka.dl4j.iterators.dataset.sequence.text.cnn
CnnSentenceDataSetIterator.Builder implementation that supports stopwords.
CnnTextEmbeddingInstanceIterator - Class in weka.dl4j.iterators.instance.sequence.text.cnn
Iterator that constructs datasets from text data for convolutional networks.
CnnTextEmbeddingInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
 
CnnTextFilesEmbeddingInstanceIterator - Class in weka.dl4j.iterators.instance.sequence.text.cnn
Iterator that constructs datasets from text data given as a set of files.
CnnTextFilesEmbeddingInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
 
CollectionLabeledSentenceProvider - Class in weka.dl4j.iterators.provider
Extend CollectionLabeledSentenceProvider from DL4J to support setting numClasses dynamically for regression tasks.
CollectionLabeledSentenceProvider(List<String>, List<String>, int) - Constructor for class weka.dl4j.iterators.provider.CollectionLabeledSentenceProvider
 
CommandLineProgressBar - Class in weka.core.progress
Command line implementation of a progress bar.
CommandLineProgressBar(double, String) - Constructor for class weka.core.progress.CommandLineProgressBar
Instantiate a new progress bar.
commandLineProgressTest() - Static method in class weka.examples.WekaDeeplearning4jExamples
 
CommonPreProcessor - Class in weka.dl4j.text.tokenization.preprocessor
A wrapper that extends the PreProcessor API for CommonPreProcessorImpl.
CommonPreProcessor() - Constructor for class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
 
CommonPreProcessorImpl - Class in weka.dl4j.text.tokenization.preprocessor.impl
A serializable version of DeepLearning4j's CommonPreProcessor.
CommonPreProcessorImpl() - Constructor for class weka.dl4j.text.tokenization.preprocessor.impl.CommonPreProcessorImpl
 
computeScore(ComputationGraph, DataSetIterator) - Static method in class weka.dl4j.Utils
Compute the model score on a given iterator.
ConstantDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's ConstantDistribution that implements WEKA option handling.
ConstantDistribution() - Constructor for class weka.dl4j.distribution.ConstantDistribution
 
ConstantSchedule - Class in weka.dl4j.schedules
Constant schedule for learning rates.
ConstantSchedule() - Constructor for class weka.dl4j.schedules.ConstantSchedule
 
ConstantSchedule.ConstantScheduleImpl - Class in weka.dl4j.schedules
 
ConstantScheduleImpl() - Constructor for class weka.dl4j.schedules.ConstantSchedule.ConstantScheduleImpl
 
ConstantScheduleImpl(double) - Constructor for class weka.dl4j.schedules.ConstantSchedule.ConstantScheduleImpl
 
convertToInstances(INDArray, Instances, Map<String, Long>) - Static method in class weka.dl4j.Utils
Converts the newly transformed instances to an Instances object.
ConvolutionalIterator - Interface in weka.dl4j.iterators.instance.api
Interface for objects for which convolution can be applied.
ConvolutionInstanceIterator - Class in weka.dl4j.iterators.instance
Converts the given Instances object into a DataSet and then constructs and returns a DefaultDataSetIterator.
ConvolutionInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
 
ConvolutionLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's ConvolutionLayer that implements WEKA option handling.
ConvolutionLayer() - Constructor for class weka.dl4j.layers.ConvolutionLayer
Constructor for setting some defaults.
ConvolutionMode - Enum in weka.dl4j.enums
Proxy Enum for ConvolutionMode.
copyNominalAttribute(Attribute) - Static method in class weka.dl4j.Utils
Copies the attribute name and values of a given nominal attribute.
countTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
 
countTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
 
create(IActivation) - Static method in class weka.dl4j.activations.Activation
Create an API wrapped schedule from a given ISchedule object.
create(Distribution) - Static method in class weka.dl4j.distribution.Distribution
Create an API wrapped layer from a given layer object.
create(IDropout) - Static method in class weka.dl4j.dropout.AbstractDropout
Create an API wrapped layer from a given layer object.
create(Layer) - Static method in class weka.dl4j.layers.Layer
Create an API wrapped layer from a given layer object.
create(ILossFunction) - Static method in class weka.dl4j.lossfunctions.LossFunction
Create an API wrapped schedule from a given ILossFunction object.
create(ISchedule) - Static method in class weka.dl4j.schedules.Schedule
Create an API wrapped schedule from a given ISchedule object.
create(StepFunction) - Static method in class weka.dl4j.stepfunctions.StepFunction
Create an API wrapped schedule from a given ISchedule object.
create(TokenPreProcess) - Static method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
Create an API wrapped schedule from a given ISchedule object.
create(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
create(InputStream) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
create(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
create(InputStream) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
create(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
 
create(InputStream) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
 
create(TokenizerFactory) - Static method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
Create an API wrapped schedule from a given ISchedule object.
create(IUpdater) - Static method in class weka.dl4j.updater.Updater
Create an API wrapped updater from a given updater object.
create(IWeightNoise) - Static method in class weka.dl4j.weightnoise.AbstractWeightNoise
Create an API wrapped updater from a given updater object.
createDataset() - Method in class weka.core.converters.ImageDirectoryLoader
Main entrypoint.
createGradient(Color, Color, int) - Static method in class weka.dl4j.interpretability.Gradient
Creates an array of Color objects for use as a gradient, using a linear interpolation between the two specified colors.
createMultiGradient(Color[], int) - Static method in class weka.dl4j.interpretability.Gradient
Creates an array of Color objects for use as a gradient, using an array of Color objects.
Cropping2D - Class in weka.dl4j.layers
A version of DeepLearning4j's DenseLayer that implements WEKA option handling.
Cropping2D() - Constructor for class weka.dl4j.layers.Cropping2D
Constructor for setting some defaults.
CustomBroadcast - Class in weka.dl4j.layers.lambda
Required for loading the EfficientNet family of models.
CustomBroadcast() - Constructor for class weka.dl4j.layers.lambda.CustomBroadcast
Instantiate the layer.
CustomBroadcast(long) - Constructor for class weka.dl4j.layers.lambda.CustomBroadcast
Instantiate the layer with the supplied width.
CustomModelSetup - Class in weka.dl4j.inference
Config class to hold parameters for a custom model that was trained previously.
CustomModelSetup() - Constructor for class weka.dl4j.inference.CustomModelSetup
 
CustomNet - Class in weka.dl4j.zoo
A dummy ZooModel which is empty.
CustomNet() - Constructor for class weka.dl4j.zoo.CustomNet
 

D

decodeCNNShape(int[]) - Static method in class weka.dl4j.Utils
Decode a CNN Input shape.
decodeCNNShape(long[]) - Static method in class weka.dl4j.Utils
Decode a CNN Input shape.
decodePredictions(INDArray) - Method in class weka.dl4j.inference.ModelOutputDecoder
Decode predictions, without any image or model name.
decodePredictions(INDArray, String, String) - Method in class weka.dl4j.inference.ModelOutputDecoder
Main entrypoint - decode the model predictions, saving the image and model name alongside it.
DefaultDataSetIterator - Class in weka.dl4j.iterators.dataset
An nd4j mini-batch iterator that iterates a given dataset.
DefaultDataSetIterator(DataSet, int) - Constructor for class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Constructs a new dataset iterator.
defaultFileLocation() - Static method in class weka.dl4j.Utils
The default location for a file parameter.
DefaultInstanceIterator - Class in weka.dl4j.iterators.instance
Converts the given Instances object into a DataSet and then constructs and returns a DefaultDataSetIterator.
DefaultInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.DefaultInstanceIterator
 
DefaultStepFunction - Class in weka.dl4j.stepfunctions
A version of DeepLearning4j's DefaultStepFunction that implements WEKA option handling.
DefaultStepFunction() - Constructor for class weka.dl4j.stepfunctions.DefaultStepFunction
 
DefaultTokenizerFactory - Class in weka.dl4j.text.tokenization.tokenizer.factory
A wrapper that extends the TokenizerFactory API for DefaultTokenizerFactoryImpl.
DefaultTokenizerFactory() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
 
DefaultTokenizerFactoryImpl - Class in weka.dl4j.text.tokenization.tokenizer.factory.impl
A serializable version of DeepLearning4j's DefaultTokenizerFactory.
DefaultTokenizerFactoryImpl() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.impl.DefaultTokenizerFactoryImpl
 
defineLayer(SameDiff, SDVariable) - Method in class weka.dl4j.layers.lambda.CustomBroadcast
 
DenseLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's DenseLayer that implements WEKA option handling.
DenseLayer() - Constructor for class weka.dl4j.layers.DenseLayer
Constructor for setting some defaults.
DenseNet - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of DenseNet.
DenseNet() - Constructor for class weka.dl4j.zoo.keras.DenseNet
Instantiate the model.
DenseNet.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.
DepthwiseConvolution2DLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's DepthwiseConvolution2DLayer that implements WEKA option handling.
DepthwiseConvolution2DLayer() - Constructor for class weka.dl4j.layers.DepthwiseConvolution2DLayer
Constructor for setting some defaults.
Disabled - Class in weka.dl4j.distribution
Disabled Distribution.
Disabled() - Constructor for class weka.dl4j.distribution.Disabled
 
Disabled - Class in weka.dl4j.dropout
Disabled dropout.
Disabled() - Constructor for class weka.dl4j.dropout.Disabled
 
Disabled - Class in weka.dl4j.weightnoise
Disabled option for WeightNoise.
Disabled() - Constructor for class weka.dl4j.weightnoise.Disabled
 
Distribution<T extends org.deeplearning4j.nn.conf.distribution.Distribution> - Class in weka.dl4j.distribution
Abstract distribution class.
Distribution() - Constructor for class weka.dl4j.distribution.Distribution
 
distributionForInstance(Instance) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
The method to use when making a prediction for a test instance.
distributionForInstance(Instance) - Method in class weka.classifiers.functions.RnnSequenceClassifier
 
distributionsForInstances(Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
The method to use when making predictions for test instances.
distributionsForInstances(Instances) - Method in class weka.classifiers.functions.RnnSequenceClassifier
The method to use when making predictions for test instances.
Dl4jAbstractStopwords - Class in weka.dl4j.text.stopwords
Abstract stopwords handler for DL4j.
Dl4jAbstractStopwords() - Constructor for class weka.dl4j.text.stopwords.Dl4jAbstractStopwords
 
Dl4jAlexNet - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's LeNet ZooModel.
Dl4jAlexNet() - Constructor for class weka.dl4j.zoo.Dl4jAlexNet
Instantiate the model.
Dl4jCNNExplorer - Class in weka.dl4j.inference
Tool to allow easy experimentation and exploration of a trained ComputationGraph - either from a previously trained Dl4jMlpClassifier, or from a pretrained Zoo Model (default).
Dl4jCNNExplorer() - Constructor for class weka.dl4j.inference.Dl4jCNNExplorer
 
Dl4jDarknet19 - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's Darknet19 ZooModel.
Dl4jDarknet19() - Constructor for class weka.dl4j.zoo.Dl4jDarknet19
Instantiate the model.
Dl4jDarknet19.VARIATION - Enum in weka.dl4j.zoo
Variations of the model.
Dl4jFaceNetNN4Small2 - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's FaceNetNN4Small2 ZooModel.
Dl4jFaceNetNN4Small2() - Constructor for class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
Instantiate the model.
Dl4jInceptionResNetV1 - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's InceptionResNetV1 ZooModel.
Dl4jInceptionResNetV1() - Constructor for class weka.dl4j.zoo.Dl4jInceptionResNetV1
Instantiate the model.
Dl4jLeNet - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's LeNet ZooModel.
Dl4jLeNet() - Constructor for class weka.dl4j.zoo.Dl4jLeNet
Instantiate the model.
Dl4jMlpClassifier - Class in weka.classifiers.functions
A wrapper for DeepLearning4j that can be used to train a multi-layer perceptron.
Dl4jMlpClassifier() - Constructor for class weka.classifiers.functions.Dl4jMlpClassifier
Instantiate the model.
Dl4jMlpFilter - Class in weka.filters.unsupervised.attribute
Weka filter that uses a neural network trained via Dl4jMlpClassifier as feature transformation.
Dl4jMlpFilter() - Constructor for class weka.filters.unsupervised.attribute.Dl4jMlpFilter
FILTER CODE.
Dl4jNASNet - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's NASNet ZooModel.
Dl4jNASNet() - Constructor for class weka.dl4j.zoo.Dl4jNASNet
 
Dl4jNull - Class in weka.dl4j.text.stopwords
Dummy stopwords scheme, returns an empty list of stopWords..
Dl4jNull() - Constructor for class weka.dl4j.text.stopwords.Dl4jNull
 
Dl4jRainbow - Class in weka.dl4j.text.stopwords
*
Dl4jRainbow() - Constructor for class weka.dl4j.text.stopwords.Dl4jRainbow
 
Dl4jResNet50 - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's ResNet50 ZooModel.
Dl4jResNet50() - Constructor for class weka.dl4j.zoo.Dl4jResNet50
Instantiate the model.
Dl4jSimpleCNN - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's SimpleCNN ZooModel.
Dl4jSimpleCNN() - Constructor for class weka.dl4j.zoo.Dl4jSimpleCNN
 
Dl4jSqueezeNet - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's ResNet50 ZooModel.
Dl4jSqueezeNet() - Constructor for class weka.dl4j.zoo.Dl4jSqueezeNet
Instantiate the model.
Dl4jStringToGlove - Class in weka.filters.unsupervised.attribute
An attribute filter that calculates word embeddings on a String attribute using the Glove implementation provided by DeepLearning4j.
Dl4jStringToGlove() - Constructor for class weka.filters.unsupervised.attribute.Dl4jStringToGlove
 
Dl4jStringToWord2Vec - Class in weka.filters.unsupervised.attribute
An attribute filter that calculates word embeddings on a String attribute using the Word2vec implementation provided by DeepLearning4j.
Dl4jStringToWord2Vec() - Constructor for class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
Dl4jStringToWordEmbeddings - Class in weka.filters.unsupervised.attribute
An abstract attribute filter that calculates word embeddings on a String attribute.
Dl4jStringToWordEmbeddings() - Constructor for class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
Dl4jVGG - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's VGG16 ZooModel.
Dl4jVGG() - Constructor for class weka.dl4j.zoo.Dl4jVGG
Instantiate the model.
Dl4jWordsFromFile - Class in weka.dl4j.text.stopwords
 
Dl4jWordsFromFile() - Constructor for class weka.dl4j.text.stopwords.Dl4jWordsFromFile
 
Dl4jXception - Class in weka.dl4j.zoo
A WEKA version of DeepLearning4j's XCeption ZooModel.
Dl4jXception() - Constructor for class weka.dl4j.zoo.Dl4jXception
Instantiate the model.
done() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Clean up after learning.
DropConnect - Class in weka.dl4j.weightnoise
DropConnect wrapper.
DropConnect() - Constructor for class weka.dl4j.weightnoise.DropConnect
 
Dropout - Class in weka.dl4j.dropout
 
Dropout() - Constructor for class weka.dl4j.dropout.Dropout
 
DropoutLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's DropoutLayer that implements WEKA option handling.
DropoutLayer() - Constructor for class weka.dl4j.layers.DropoutLayer
Constructor for setting some defaults.

E

EarlyStopping - Class in weka.dl4j.earlystopping
Early stopping implementation to stop training after N epochs without loss improvement on a separate validation set.
EarlyStopping() - Constructor for class weka.dl4j.earlystopping.EarlyStopping
 
EarlyStopping(int, double) - Constructor for class weka.dl4j.earlystopping.EarlyStopping
Constructor setting maxEpochsNoImprovement and validation split
EfficientNet - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of EfficientNet.
EfficientNet() - Constructor for class weka.dl4j.zoo.keras.EfficientNet
Instantiate the model.
EfficientNet.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.
EmptyIteratorException - Exception in weka.core
Exception raised when the iterator was unexpectedly empty
EmptyIteratorException(String) - Constructor for exception weka.core.EmptyIteratorException
 
EmptyIteratorException(String, Throwable) - Constructor for exception weka.core.EmptyIteratorException
 
EndingPreProcessor - Class in weka.dl4j.text.tokenization.preprocessor
A wrapper that extends the PreProcessor API for EndingPreProcessorImpl.
EndingPreProcessor() - Constructor for class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
 
EndingPreProcessorImpl - Class in weka.dl4j.text.tokenization.preprocessor.impl
A serializable version of DeepLearning4j's EndingPreProcessor.
EndingPreProcessorImpl() - Constructor for class weka.dl4j.text.tokenization.preprocessor.impl.EndingPreProcessorImpl
 
enforceValidForZooModel(AbstractZooModel) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
The only one-channel zoo model currently implemented is Dl4JLeNet.
enforceZooModelSize(AbstractZooModel) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
Enforces the input image size if using a zoo model.
EpochListener - Class in weka.dl4j.listener
A listener that prints the model score every epoch.
EpochListener() - Constructor for class weka.dl4j.listener.EpochListener
 
evaluate(ComputationGraph) - Method in class weka.dl4j.earlystopping.EarlyStopping
Evaluate a model and check if the training should continue.
ExplorerDl4jInference - Class in weka.gui.explorer
Explorer panel for the Dl4j Model Inference Window
ExplorerDl4jInference() - Constructor for class weka.gui.explorer.ExplorerDl4jInference
Create the panel.
ExponentialSchedule - Class in weka.dl4j.schedules
Exponential schedule for learning rates.
ExponentialSchedule() - Constructor for class weka.dl4j.schedules.ExponentialSchedule
 

F

featurizeForLayer(String, DataSetIterator, PoolingType) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Uses the DL4J TransferLearningHelper to featurize the instances using activations from the given layer
FeedForwardLayer<T extends org.deeplearning4j.nn.conf.layers.FeedForwardLayer> - Class in weka.dl4j.layers
Abstract feed forward layer.
FeedForwardLayer() - Constructor for class weka.dl4j.layers.FeedForwardLayer
 
FILE_EXTENSION - Static variable in class weka.core.converters.Word2VecLoader
the file extension.
FILE_EXTENSION_COMPRESSED - Static variable in class weka.core.converters.Word2VecLoader
the extension for compressed files.
FileLabeledSentenceProvider - Class in weka.dl4j.iterators.provider
Implement LabeledSentenceProvider for loading labeled files.
FileLabeledSentenceProvider(List<File>, List<String>, int) - Constructor for class weka.dl4j.iterators.provider.FileLabeledSentenceProvider
 
fileListForFolder(File) - Method in class weka.core.converters.ImageDirectoryLoader
Appends the folder that the image is in, to the image path.
FILTER_NONE - Static variable in class weka.classifiers.functions.Dl4jMlpClassifier
filter: No normalization/standardization.
FILTER_NORMALIZE - Static variable in class weka.classifiers.functions.Dl4jMlpClassifier
filter: Normalize training data.
FILTER_STANDARDIZE - Static variable in class weka.classifiers.functions.Dl4jMlpClassifier
filter: Standardize training data.
finish() - Method in class weka.core.progress.AbstractProgressBar
Perform any teardown (e.g., close popup window, display completion message)
finish() - Method in class weka.core.progress.CommandLineProgressBar
Perform any teardown (e.g., close popup window, display completion message)
finish() - Method in class weka.core.progress.GUIProgressBar
Perform any teardown (e.g., close popup window, display completion message)
finish() - Method in class weka.core.progress.ProgressManager
Close out the progress bar.
finishProgress() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Close up all progress managers when we finish processing.
fromBackend(ConvolutionLayer.AlgoMode) - Static method in enum weka.dl4j.enums.AlgoMode
Parse backend algo mode and return weka enum implementation.
fromBackend(ConvolutionMode) - Static method in enum weka.dl4j.enums.ConvolutionMode
Parse backend convolution mode and return weka enum implementation.
fromBackend(GradientNormalization) - Static method in enum weka.dl4j.enums.GradientNormalization
Parse backend gradient normalization and return weka enum implementation.
fromBackend(PoolingType) - Static method in enum weka.dl4j.enums.PoolingType
Parse backend pooling type and return weka enum implementation.
fromBackend(PretrainedType) - Static method in enum weka.dl4j.enums.PretrainedType
Parse backend pooling type and return weka enum implementation.
fromBackend(ScheduleType) - Static method in enum weka.dl4j.schedules.ScheduleType
Parse backend schedule type and return weka enum implementation.

G

GaussianDropout - Class in weka.dl4j.dropout
Gaussian dropout implementation.
GaussianDropout() - Constructor for class weka.dl4j.dropout.GaussianDropout
 
GaussianNoise - Class in weka.dl4j.dropout
Gaussian noise implementation.
GaussianNoise() - Constructor for class weka.dl4j.dropout.GaussianNoise
 
generateAndSaveOutputMap() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Generate the output heatmap, and save to file.
generateHeatmapToImage(int[], String[], boolean) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
Generates heatmaps for the supplied classes, returning a human-viewable heatmap summary.
generateHeatmapToImage() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
Generates heatmaps, returning a human-viewable heatmap summary.
generateHeatmapToImage(int[], String[], boolean) - Method in class weka.dl4j.interpretability.ScoreCAM
 
generateHeatmapToImage() - Method in class weka.dl4j.interpretability.WekaScoreCAM
 
generateOutputMap() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Generate and return the heatmap.
getAction() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getActivationFunction() - Method in class weka.dl4j.layers.ActivationLayer
 
getActivationFunction() - Method in class weka.dl4j.layers.FeedForwardLayer
 
getActivationsAtLayers(String[], Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Overridden method - if no pooling type is given then set it to NONE Uses the given set of layers to extract features for the given dataset
getActivationsAtLayers(String[], Instances, PoolingType) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Uses the given set of layers to extract features for the given dataset
getAlpha() - Method in class weka.dl4j.activations.ActivationELU
 
getAlpha() - Method in class weka.dl4j.activations.ActivationLReLU
 
getAlpha() - Method in class weka.dl4j.dropout.AlphaDropout
 
getAlpha() - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
getApplicationName() - Method in class weka.dl4j.IsGPUAvailable
 
getAttributeName(Map<String, Long>, int) - Static method in class weka.dl4j.Utils
Helper function for getting the new layer name when using the Dl4jMlpFilter The attributes are named after the layer they originated from, so this function counts throught the attributes per layer, comparing it with the given index to determine a) which layer the activation came from and b) which number activation this is.
getBackend() - Method in class weka.dl4j.activations.Activation
 
getBackend() - Method in class weka.dl4j.activations.ActivationELU
 
getBackend() - Method in class weka.dl4j.activations.ActivationLReLU
 
getBackend() - Method in interface weka.dl4j.ApiWrapper
Access the DL4J backend.
getBackend() - Method in class weka.dl4j.distribution.BinomialDistribution
 
getBackend() - Method in class weka.dl4j.distribution.Distribution
 
getBackend() - Method in class weka.dl4j.dropout.AbstractDropout
 
getBackend() - Method in class weka.dl4j.dropout.AlphaDropout
 
getBackend() - Method in class weka.dl4j.dropout.GaussianDropout
 
getBackend() - Method in class weka.dl4j.dropout.GaussianNoise
 
getBackend() - Method in enum weka.dl4j.enums.AlgoMode
 
getBackend() - Method in enum weka.dl4j.enums.ConvolutionMode
 
getBackend() - Method in enum weka.dl4j.enums.GradientNormalization
 
getBackend() - Method in enum weka.dl4j.enums.PoolingType
 
getBackend() - Method in enum weka.dl4j.enums.PretrainedType
 
getBackend() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
 
getBackend() - Method in class weka.dl4j.layers.Layer
 
getBackend() - Method in class weka.dl4j.lossfunctions.LossFunction
 
getBackend() - Method in class weka.dl4j.schedules.ConstantSchedule
 
getBackend() - Method in class weka.dl4j.schedules.InverseSchedule
 
getBackend() - Method in class weka.dl4j.schedules.Schedule
 
getBackend() - Method in enum weka.dl4j.schedules.ScheduleType
 
getBackend() - Method in class weka.dl4j.stepfunctions.StepFunction
 
getBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
 
getBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
 
getBackend() - Method in class weka.dl4j.updater.Adam
 
getBackend() - Method in class weka.dl4j.updater.Updater
 
getBackend() - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
 
getBatchSize() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
getBatchSize() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
getBatchSize() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
getBeta() - Method in class weka.dl4j.layers.BatchNormalization
 
getBeta1() - Method in class weka.dl4j.updater.Adam
 
getBeta1() - Method in class weka.dl4j.updater.AdaMax
 
getBeta1() - Method in class weka.dl4j.updater.Nadam
 
getBeta2() - Method in class weka.dl4j.updater.Adam
 
getBeta2() - Method in class weka.dl4j.updater.AdaMax
 
getBeta2() - Method in class weka.dl4j.updater.Nadam
 
getBiasInit() - Method in class weka.dl4j.NeuralNetConfiguration
 
getBiasUpdater() - Method in class weka.dl4j.NeuralNetConfiguration
 
getBuiltInClassMap() - Method in class weka.dl4j.inference.ModelOutputDecoder
 
getCacheMode() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getCapabilities() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.functions.RnnSequenceClassifier
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getChannelsLast() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
getChannelsLast() - Method in class weka.dl4j.zoo.AbstractZooModel
 
getClasses() - Method in class weka.dl4j.inference.ModelOutputDecoder
Parses the classmap file into a String[]
getClassID() - Method in class weka.dl4j.inference.Prediction
 
getClassID() - Method in class weka.dl4j.inference.PredictionClass
 
getClassMap() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
getClassMapFile() - Method in class weka.dl4j.inference.ModelOutputDecoder
 
getClassName() - Method in class weka.dl4j.inference.Prediction
 
getClassName() - Method in class weka.dl4j.inference.PredictionClass
 
getClassProbability() - Method in class weka.dl4j.inference.Prediction
 
getComputationGraph() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
getConcat_words() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getConcatWords() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getConvolutionMode() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getConvolutionMode() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
 
getConvolutionMode() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getCudnnAlgoMode() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getCudnnAlgoMode() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
 
getCurrentClassMap() - Method in class weka.gui.explorer.SaliencyMapWindow
 
getCurrentPredictions() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
getCursor() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getCustomModelSetup() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
getCustomModelSetup() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
getDataSet() - Method in class weka.core.converters.ImageDirectoryLoader
 
getDataSet() - Method in class weka.core.converters.Word2VecLoader
 
getDataSetIterator(Instances, int) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Returns the actual iterator.
getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Returns the actual iterator.
getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
Returns the actual iterator.
getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
Returns the actual iterator.
getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
This method returns the iterator.
getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
 
getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
 
getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
Returns the actual iterator.
getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
 
getDataSetPreProcessor() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getDecay() - Method in class weka.dl4j.layers.BatchNormalization
 
getDecayRate() - Method in class weka.dl4j.schedules.StepSchedule
 
getDefaultClassID() - Method in class weka.gui.explorer.SaliencyMapWindow
 
getDefaultGraph() - Method in class weka.dl4j.zoo.AbstractZooModel
Convenience method to returns a default pretrained graph for this zoo model
getDelimiters() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
getDelimiters() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
 
getDist() - Method in class weka.dl4j.NeuralNetConfiguration
 
getDistribution() - Method in class weka.dl4j.weightnoise.WeightNoise
 
getDl4jLogLevel() - Method in class weka.core.LogConfiguration
Get the Dl4j log level.
getDl4jMlpClassifier() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
getDoNotClearFilesystemCache() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getDropout() - Method in class weka.dl4j.layers.DropoutLayer
 
getDropout() - Method in class weka.dl4j.NeuralNetConfiguration
 
getEarlyStopping() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getEmbedding_prefix() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getEpochs() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getEps() - Method in class weka.dl4j.layers.BatchNormalization
 
getEps() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getEpsilon() - Method in class weka.dl4j.updater.AdaDelta
 
getEpsilon() - Method in class weka.dl4j.updater.AdaGrad
 
getEpsilon() - Method in class weka.dl4j.updater.Adam
 
getEpsilon() - Method in class weka.dl4j.updater.AdaMax
 
getEpsilon() - Method in class weka.dl4j.updater.Nadam
 
getEpsilon() - Method in class weka.dl4j.updater.RmsProp
 
getETAString() - Method in class weka.core.progress.AbstractProgressBar
Gets the estimated time remaining of the task, or "" if indeterminate
getExplorer() - Method in class weka.gui.explorer.ExplorerDl4jInference
returns the parent Explorer frame
getExtraLayersToRemove() - Method in class weka.dl4j.zoo.AbstractZooModel
 
getFeatureExtractionLayer() - Method in class weka.dl4j.zoo.AbstractZooModel
 
getFieldValue(Object, String) - Static method in class weka.dl4j.Utils
Access private field of a given object.
getFileDescription() - Method in class weka.core.converters.Word2VecLoader
 
getFileExtension() - Method in class weka.core.converters.Word2VecLoader
 
getFileExtensions() - Method in class weka.core.converters.Word2VecLoader
 
getFilterType() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getGain() - Method in class weka.dl4j.distribution.OrthogonalDistribution
 
getGamma() - Method in class weka.dl4j.layers.BatchNormalization
 
getGamma() - Method in class weka.dl4j.schedules.ExponentialSchedule
 
getGamma() - Method in class weka.dl4j.schedules.InverseSchedule
 
getGamma() - Method in class weka.dl4j.schedules.SigmoidSchedule
 
getGateActivationFn() - Method in class weka.dl4j.layers.GravesLSTM
Deprecated.
 
getGateActivationFn() - Method in class weka.dl4j.layers.LSTM
 
getGenerateSaliencyMap() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
getGradientCheck() - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
getGradientNormalization() - Method in class weka.dl4j.NeuralNetConfiguration
 
getGradientNormalizationThreshold() - Method in class weka.dl4j.NeuralNetConfiguration
 
getHeight() - Method in interface weka.dl4j.iterators.instance.api.ConvolutionalIterator
 
getHeight() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
 
getHeight() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
getHeight() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
getImageInstanceIterator() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
getImagePreProcessingScaler() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.AbstractZooModel
Get the preprocessor to process this model's data with
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.CustomNet
By default, training a model uses the below scaler for the Dl4jMlpClassifier.
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jAlexNet
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jDarknet19
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jInceptionResNetV1
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jLeNet
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jResNet50
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jSqueezeNet
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jVGG
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jXception
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasDenseNet
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasEfficientNet
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasInceptionV3
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasNASNet
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasResNet
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasVGG
 
getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasXception
 
getImagesLocation() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
getImagesLocation() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
getImplementingWrapper(Class<T>, V, String) - Static method in class weka.dl4j.ApiWrapperUtil
Return the implementing wrapper class of a given backend object.
getInitialValue() - Method in class weka.dl4j.schedules.ConstantSchedule
 
getInitialValue() - Method in class weka.dl4j.schedules.MapSchedule
Deprecated.
getInitialValue() - Method in class weka.dl4j.schedules.Schedule
 
getInputChannels() - Method in class weka.dl4j.inference.CustomModelSetup
 
getInputDirectory() - Method in class weka.core.converters.ImageDirectoryLoader
 
getInputFilename() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
getInputHeight() - Method in class weka.dl4j.inference.CustomModelSetup
 
getInputShape(CustomModelSetup) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getInputShape() - Method in class weka.dl4j.zoo.AbstractZooModel
Get the input shape of this zoomodel
getInputShape() - Method in class weka.dl4j.zoo.CustomNet
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jAlexNet
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jDarknet19
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jInceptionResNetV1
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jLeNet
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jResNet50
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jSqueezeNet
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jVGG
 
getInputShape() - Method in class weka.dl4j.zoo.Dl4jXception
 
getInputShape() - Method in class weka.dl4j.zoo.KerasDenseNet
 
getInputShape() - Method in class weka.dl4j.zoo.KerasEfficientNet
 
getInputShape() - Method in class weka.dl4j.zoo.KerasInceptionV3
 
getInputShape() - Method in class weka.dl4j.zoo.KerasNASNet
 
getInputShape() - Method in class weka.dl4j.zoo.KerasResNet
 
getInputShape() - Method in class weka.dl4j.zoo.KerasVGG
 
getInputShape() - Method in class weka.dl4j.zoo.KerasXception
 
getInputWidth() - Method in class weka.dl4j.inference.CustomModelSetup
 
getInstanceIterator() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getInstanceIterator() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
getIsMinibatch() - Method in class weka.dl4j.layers.BatchNormalization
 
getIterationListener() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getIterations() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getKernelSize() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getKernelSize() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getKernelSizeX() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getKernelSizeX() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getKernelSizeY() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getKernelSizeY() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getL1() - Method in class weka.dl4j.NeuralNetConfiguration
 
getL2() - Method in class weka.dl4j.NeuralNetConfiguration
 
getLabelForPath(String) - Method in class weka.dl4j.ArffMetaDataLabelGenerator
Select the label based on the path in the metadata
getLabelForPath(URI) - Method in class weka.dl4j.ArffMetaDataLabelGenerator
 
getLabels() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Gets the labels.
getLabels() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
getLabels() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
getLambda() - Method in class weka.dl4j.dropout.AlphaDropout
 
getLambda() - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
getLayerName() - Method in class weka.dl4j.layers.Layer
 
getLayers() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getLayerSize() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getLearningRate() - Method in class weka.dl4j.updater.AdaDelta
 
getLearningRate() - Method in class weka.dl4j.updater.Updater
Get the learning rate
getLearningRate() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
getLearningRateSchedule() - Method in class weka.dl4j.updater.Updater
Get the learning rate schedule
getLevel() - Method in enum weka.core.LogConfiguration.LogLevel
Get the internal log level.
getLoadLayerSpecification() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getLockGammaAndBeta() - Method in class weka.dl4j.layers.BatchNormalization
 
getLogConfig() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Get the log configuration.
getLogFile() - Method in class weka.core.LogConfiguration
Get the log file
getLossFn() - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
getLossFn() - Method in class weka.dl4j.layers.LossLayer
 
getLossFn() - Method in class weka.dl4j.layers.OutputLayer
 
getLossFn() - Method in class weka.dl4j.layers.RnnOutputLayer
 
getLower() - Method in class weka.dl4j.distribution.UniformDistribution
 
getLowerBound() - Method in class weka.dl4j.activations.ActivationRReLU
 
getMatchingClasses(String) - Method in class weka.gui.explorer.ClassSelector
Get the list of classes in our classmap that matches the supplied pattern.
getMaxEpochsNoImprovement() - Method in class weka.dl4j.earlystopping.EarlyStopping
 
getMaxIter() - Method in class weka.dl4j.schedules.PolySchedule
 
getMaxProgress() - Method in class weka.core.progress.AbstractProgressBar
Get the max progress value
getMaxSentenceLength() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getMean() - Method in class weka.dl4j.distribution.LogNormalDistribution
 
getMean() - Method in class weka.dl4j.distribution.NormalDistribution
 
getMean() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
 
getMenuBar() - Method in class weka.dl4j.IsGPUAvailable
 
getMenuEntryText() - Method in class weka.dl4j.IsGPUAvailable
 
getMenuToDisplayIn() - Method in class weka.dl4j.IsGPUAvailable
 
getMinLearningRate() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
getMinWordFrequency() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getModel() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Get the ComputationGraph model
getModelInputShape() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
getModelInputShape() - Method in class weka.dl4j.interpretability.ScoreCAM
 
getModelName() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Get the name of the loaded model
getModelName() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Get the name of the loaded model
getModelName() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
getModelOutputDecoder() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
getMomentum() - Method in class weka.dl4j.updater.Nesterovs
 
getN() - Method in class weka.dl4j.inference.TopNPredictions
 
getN() - Method in class weka.dl4j.listener.EpochListener
 
getNd4jLogLevel() - Method in class weka.core.LogConfiguration
Get the Nd4j log level.
getNegative() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
getNeuralNetConfiguration() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getNext(DataSetIterator) - Static method in class weka.dl4j.Utils
Fix for issue with JVM crashing https://github.com/eclipse/deeplearning4j/issues/8976#issuecomment-639946904 It is recommended to use this helper function in WekaDeeplearning4j rather than using iter.next() directly.
getNext(DataSetIterator, int) - Static method in class weka.dl4j.Utils
Fix for issue with JVM crashing https://github.com/eclipse/deeplearning4j/issues/8976#issuecomment-639946904 It is recommended to use this helper function in WekaDeeplearning4j rather than using iter.next() directly.
getNextInstance(Instances) - Method in class weka.core.converters.ImageDirectoryLoader
 
getNextInstance(Instances) - Method in class weka.core.converters.Word2VecLoader
 
getNextWekaString() - Method in class weka.dl4j.text.sentenceiterator.WekaInstanceSentenceIterator
Gets the next String from a Weka Instance
getNMax() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
 
getNMax() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
getNMax() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
getNMax() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
 
getNMin() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
 
getNMin() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
getNMin() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
getNMin() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
 
getNormalizeHeatmap() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
getNOut() - Method in class weka.dl4j.layers.BatchNormalization
Deprecated.
getNOut() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getNOut() - Method in class weka.dl4j.layers.FeedForwardLayer
 
getNumberOfTrials() - Method in class weka.dl4j.distribution.BinomialDistribution
 
getNumChannels() - Method in interface weka.dl4j.iterators.instance.api.ConvolutionalIterator
 
getNumChannels() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
 
getNumChannels() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
getNumChannels() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
getNumClasses() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getNumEpochs() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getNumFExtractOutputs() - Method in class weka.dl4j.zoo.AbstractZooModel
 
getNumGPUs() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getOptimizationAlgo() - Method in class weka.dl4j.NeuralNetConfiguration
 
getOptions() - Method in class weka.core.converters.ImageDirectoryLoader
Gets the current settings of the Classifier.
getOptions() - Method in class weka.core.LogConfiguration
Gets the current settings of the log configuration
getOptions() - Method in class weka.dl4j.activations.Activation
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationCube
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationELU
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationHardSigmoid
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationHardTanH
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationIdentity
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationLReLU
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationRationalTanh
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationReLU
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationRReLU
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSigmoid
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSoftmax
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSoftPlus
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSoftSign
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSwish
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationTanH
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.BinomialDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.ConstantDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.Distribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.LogNormalDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.NormalDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.OrthogonalDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.UniformDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.dropout.AbstractDropout
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.dropout.AlphaDropout
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.dropout.Dropout
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.dropout.GaussianDropout
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.dropout.GaussianNoise
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.earlystopping.EarlyStopping
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.inference.CustomModelSetup
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.inference.ModelOutputDecoder
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.IsGPUAvailable
Gets the current option settings for the OptionHandler.
getOptions() - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.ActivationLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.BatchNormalization
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.CenterLossOutputLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.ConvolutionLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.Cropping2D
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.DenseLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.DropoutLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.FeedForwardLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.GlobalPoolingLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.GravesLSTM
Deprecated.
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.Layer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.LocalResponseNormalization
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.LossLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.LSTM
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.NoParamLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.OutputLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.RnnOutputLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.SameDiffLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.SubsamplingLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.ZeroPaddingLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.listener.TrainingListener
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossFMeasure
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossHinge
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossKLD
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossL1
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossL2
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMAE
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMAPE
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMCXENT
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMixtureDensity
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMSE
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMSLE
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMultiLabel
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossPoisson
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.NeuralNetConfiguration
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.schedules.ConstantSchedule
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.schedules.ExponentialSchedule
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.schedules.InverseSchedule
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.schedules.MapSchedule
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.schedules.PolySchedule
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.schedules.Schedule
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.schedules.SigmoidSchedule
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.schedules.StepSchedule
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.StepFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.AdaDelta
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.AdaGrad
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.Adam
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.AdaMax
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.Nadam
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.Nesterovs
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.RmsProp
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.Sgd
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.updater.Updater
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.weightnoise.DropConnect
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.weightnoise.WeightNoise
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.zoo.AbstractZooModel
Gets the current settings of the Classifier.
getOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
Gets the current settings of the Classifier.
getOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
getOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getOutputFile() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
getOutputFileName() - Method in class weka.core.converters.ImageDirectoryLoader
 
getOutputlayer() - Method in class weka.dl4j.zoo.AbstractZooModel
 
getOutputType(int, InputType) - Method in class weka.dl4j.layers.lambda.CustomBroadcast
 
getP() - Method in class weka.dl4j.dropout.AlphaDropout
 
getP() - Method in class weka.dl4j.dropout.Dropout
Get the learning rate schedule
getPadding() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getPadding() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPadding() - Method in class weka.dl4j.layers.ZeroPaddingLayer
 
getPaddingColumns() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getPaddingColumns() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPaddingColumns() - Method in class weka.dl4j.layers.ZeroPaddingLayer
 
getPaddingRows() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getPaddingRows() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPaddingRows() - Method in class weka.dl4j.layers.ZeroPaddingLayer
 
getParameterAveragingFrequency() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getPathURIs() - Method in class weka.dl4j.ArffMetaDataLabelGenerator
Get all paths as uris
getPnorm() - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
getPnorm() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPoolingDimensions() - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
getPoolingType() - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
getPoolingType() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPoolingType() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
getPower() - Method in class weka.dl4j.schedules.InverseSchedule
 
getPower() - Method in class weka.dl4j.schedules.PolySchedule
 
getPrediction(int) - Method in class weka.dl4j.inference.TopNPredictions
Get the prediction at index i.
getPredictionClass() - Method in class weka.dl4j.inference.Prediction
 
getPrefetchBufferSize() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getPreProcessor() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Gets the preprocessor.
getPreProcessor() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
getPreProcessor() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
getPreProcessor() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getPretrainedType() - Method in class weka.dl4j.zoo.AbstractZooModel
 
getPrettyName() - Method in class weka.dl4j.zoo.AbstractZooModel
 
getProbabilityOfSuccess() - Method in class weka.dl4j.distribution.BinomialDistribution
 
getProgressManager() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
getProgressMessage() - Method in class weka.core.progress.AbstractProgressBar
Return the user supplied progress message
getpSchedule() - Method in class weka.dl4j.dropout.AlphaDropout
 
getpSchedule() - Method in class weka.dl4j.dropout.Dropout
 
getQueueSize() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getRateSchedule() - Method in class weka.dl4j.dropout.GaussianDropout
 
getRateSchedule() - Method in class weka.dl4j.dropout.GaussianNoise
 
getRelationalAttributeIndex() - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
 
GetResolvedPath(String) - Method in class weka.dl4j.ResourceResolver
 
getResume() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Returns true if the model is to be finalized (or has been finalized) after training.
getRevision() - Method in class weka.core.converters.ImageDirectoryLoader
 
getRevision() - Method in class weka.core.converters.Word2VecLoader
 
getRho() - Method in class weka.dl4j.updater.AdaDelta
 
getRmsDecay() - Method in class weka.dl4j.updater.RmsProp
 
getSaliencyMapWrapper() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
getSampling() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
getScheduleType() - Method in class weka.dl4j.schedules.Schedule
 
getSeed() - Method in class weka.dl4j.NeuralNetConfiguration
 
getSeed() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getSentenceProvider() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getSentenceProvider(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
Create a sentence provider from the given data.
getSentenceProvider(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
 
getSentenceProvider(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
 
getSerializedModelFile() - Method in class weka.dl4j.inference.CustomModelSetup
 
getSerializedModelFile() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
GET/SET METHODS
getStd() - Method in class weka.dl4j.distribution.LogNormalDistribution
 
getStd() - Method in class weka.dl4j.distribution.NormalDistribution
 
getStd() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
 
getStdDev() - Method in class weka.dl4j.dropout.GaussianNoise
 
getStemmer() - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
 
getStemmer() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
 
getStep() - Method in class weka.dl4j.schedules.StepSchedule
 
getStepSize() - Method in class weka.dl4j.schedules.SigmoidSchedule
 
getStopList() - Method in class weka.dl4j.text.stopwords.Dl4jAbstractStopwords
Returns the list of stopwords.
getStopList() - Method in class weka.dl4j.text.stopwords.Dl4jNull
 
getStopList() - Method in class weka.dl4j.text.stopwords.Dl4jRainbow
 
getStopList() - Method in class weka.dl4j.text.stopwords.Dl4jWordsFromFile
 
getStopwords() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getStopwords() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
getStopWordsHandler() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getStride() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getStride() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getStrideColumns() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getStrideColumns() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getStrideRows() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getStrideRows() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getStructure() - Method in class weka.core.converters.ImageDirectoryLoader
 
getStructure() - Method in class weka.core.converters.Word2VecLoader
 
getTabTitle() - Method in class weka.gui.explorer.ExplorerDl4jInference
Returns the title for the tab in the Explorer
getTabTitleToolTip() - Method in class weka.gui.explorer.ExplorerDl4jInference
Returns the tooltip for the tab in the Explorer
getTargetClass() - Method in class weka.gui.explorer.ClassSelector
 
getTargetClassIDs() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
getTargetClassIDsAsInt() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
gettBPTTbackwardLength() - Method in class weka.classifiers.functions.RnnSequenceClassifier
 
gettBPTTforwardLength() - Method in class weka.classifiers.functions.RnnSequenceClassifier
 
getTechnicalInformation() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTextIndex() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getTextsLocation() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
 
getTextsLocation() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
 
getTokenizerFactory() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
getTokenizerFactory() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getTokenPreProcess() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
getTokenPreProcessor() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
getTokenPreProcessor() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
getTokenPreProcessor() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
 
getTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
 
getTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
 
getTopPrediction() - Method in class weka.dl4j.inference.TopNPredictions
 
getTopPredictions() - Method in class weka.dl4j.inference.TopNPredictions
 
getTrainBatchSize() - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Getting the training batch size
getTrainBatchSize() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
getTransformationLayer(int) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
getTransformationLayers() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
getTruncateLength() - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
 
getTruncateLength() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
getUnknown() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getUnknownWordHandling() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getUnknownWordSentinel() - Static method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getUpdater() - Method in class weka.dl4j.NeuralNetConfiguration
 
getUpper() - Method in class weka.dl4j.distribution.UniformDistribution
 
getUpperBound() - Method in class weka.dl4j.activations.ActivationRReLU
 
getUseCustomModel() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
getUseDefaultFeatureLayer() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
getUseNormalizedWordVectors() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getValDataSetIterator() - Method in class weka.dl4j.earlystopping.EarlyStopping
Get the validation dataset iterator
getValidationSetPercentage() - Method in class weka.dl4j.earlystopping.EarlyStopping
 
getValue() - Method in class weka.dl4j.distribution.ConstantDistribution
 
getValues() - Method in class weka.dl4j.schedules.MapSchedule
 
getVariation() - Method in class weka.dl4j.zoo.AbstractZooModel
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.CustomNet
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.Dl4jAlexNet
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.Dl4jDarknet19
 
getVariation() - Method in class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.Dl4jInceptionResNetV1
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.Dl4jLeNet
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.Dl4jResNet50
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.Dl4jSqueezeNet
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.Dl4jVGG
 
getVariation() - Method in class weka.dl4j.zoo.Dl4jXception
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
getVariation() - Method in class weka.dl4j.zoo.KerasDenseNet
 
getVariation() - Method in class weka.dl4j.zoo.KerasEfficientNet
 
getVariation() - Method in class weka.dl4j.zoo.KerasInceptionV3
 
getVariation() - Method in class weka.dl4j.zoo.KerasNASNet
 
getVariation() - Method in class weka.dl4j.zoo.KerasResNet
 
getVariation() - Method in class weka.dl4j.zoo.KerasVGG
 
getVariation() - Method in class weka.dl4j.zoo.KerasXception
 
getWeightInit() - Method in class weka.dl4j.NeuralNetConfiguration
 
getWeightNoise() - Method in class weka.dl4j.NeuralNetConfiguration
 
getWeightRetainProbability() - Method in class weka.dl4j.weightnoise.DropConnect
Get the learning rate schedule
getWeightRetainProbabilitySchedule() - Method in class weka.dl4j.weightnoise.DropConnect
Get the learning rate schedule
getWekaDl4jLogLevel() - Method in class weka.core.LogConfiguration
Get the WekaDeeplearning4j log level.
getWidth() - Method in interface weka.dl4j.iterators.instance.api.ConvolutionalIterator
 
getWidth() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
 
getWidth() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
getWidth() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
getWindowSize() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getWordVectorLocation() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
getWordVectors() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getWordVectors() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
getWordVectorSize() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
getWorkers() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
getZooModel() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Get the modelzoo model
getZooModel() - Method in class weka.classifiers.functions.RnnSequenceClassifier
Deprecated.
getZooModelType() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
getZooModelType() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
globalInfo() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
.
globalInfo() - Method in class weka.classifiers.functions.RnnSequenceClassifier
 
globalInfo() - Method in class weka.dl4j.earlystopping.EarlyStopping
Returns a string describing this search method
globalInfo() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
 
globalInfo() - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
 
globalInfo() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
Return the global info for this class.
globalInfo() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
 
globalInfo() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
 
globalInfo() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
 
globalInfo() - Method in class weka.dl4j.layers.ActivationLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.BatchNormalization
Global info.
globalInfo() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.CenterLossOutputLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.ConvolutionLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.Cropping2D
Global info.
globalInfo() - Method in class weka.dl4j.layers.DenseLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.DropoutLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.GlobalPoolingLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.GravesLSTM
Deprecated.
Global info.
globalInfo() - Method in class weka.dl4j.layers.LocalResponseNormalization
Global info.
globalInfo() - Method in class weka.dl4j.layers.LossLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.LSTM
Global info.
globalInfo() - Method in class weka.dl4j.layers.OutputLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.RnnOutputLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.SubsamplingLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.ZeroPaddingLayer
Global info.
globalInfo() - Method in class weka.dl4j.listener.EpochListener
Returns a string describing this search method
globalInfo() - Method in class weka.dl4j.NeuralNetConfiguration
Returns a string describing this search method
globalInfo() - Method in class weka.dl4j.text.stopwords.Dl4jNull
Returns a string describing the stopwords scheme.
globalInfo() - Method in class weka.dl4j.text.stopwords.Dl4jRainbow
Returns a string describing the stopwords scheme.
globalInfo() - Method in class weka.dl4j.text.stopwords.Dl4jWordsFromFile
Returns a string describing the stopwords scheme.
globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
Returns a string describing this object.
globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
Returns a string describing this object.
globalInfo() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
globalInfo() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
Returns a string describing this filter.
GlobalPoolingLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's GlobalPooling that implements WEKA option handling.
GlobalPoolingLayer() - Constructor for class weka.dl4j.layers.GlobalPoolingLayer
Constructor for setting some defaults.
Gradient - Class in weka.dl4j.interpretability
There are a number of defined gradient types (look at the static fields), but you can create any gradient you like by using either of the following functions: public static Color[] createMultiGradient(Color[] colors, int numSteps) public static Color[] createGradient(Color one, Color two, int numSteps) You can then assign an arbitrary Color[] object to the HeatMap as follows:
Gradient() - Constructor for class weka.dl4j.interpretability.Gradient
 
GRADIENT_ALPHA - Static variable in class weka.dl4j.interpretability.Gradient
 
GRADIENT_BLACK_TO_WHITE - Static variable in class weka.dl4j.interpretability.Gradient
Produces a gradient from black (low) to white (high)
GRADIENT_BLUE_TO_RED - Static variable in class weka.dl4j.interpretability.Gradient
Produces a gradient from blue (low) to red (high)
GRADIENT_GREEN_YELLOW_ORANGE_RED - Static variable in class weka.dl4j.interpretability.Gradient
Produces a gradient through green, yellow, orange, red
GRADIENT_HEAT - Static variable in class weka.dl4j.interpretability.Gradient
Produces a different gradient for hot things (black, brown, orange, white)
GRADIENT_HOT - Static variable in class weka.dl4j.interpretability.Gradient
Produces a gradient for hot things (black, red, orange, yellow, white)
GRADIENT_MAROON_TO_GOLD - Static variable in class weka.dl4j.interpretability.Gradient
Produces a gradient using the University of Minnesota's school colors, from maroon (low) to gold (high)
GRADIENT_PLASMA - Static variable in class weka.dl4j.interpretability.Gradient
From https://revolution-computing.typepad.com/.a/6a010534b1db25970b01bb0931cd68970d-pi
GRADIENT_RAINBOW - Static variable in class weka.dl4j.interpretability.Gradient
Produces a gradient through the rainbow: violet, blue, green, yellow, orange, red
GRADIENT_RED_TO_GREEN - Static variable in class weka.dl4j.interpretability.Gradient
Produces a gradient from red (low) to green (high)
GRADIENT_ROY - Static variable in class weka.dl4j.interpretability.Gradient
Produces a gradient through red, orange, yellow
GradientNormalization - Enum in weka.dl4j.enums
Proxy Enum for GradientNormalization.
GradientStepFunction - Class in weka.dl4j.stepfunctions
A version of DeepLearning4j's GradientStepFunction that implements WEKA option handling.
GradientStepFunction() - Constructor for class weka.dl4j.stepfunctions.GradientStepFunction
 
GravesLSTM - Class in weka.dl4j.layers
Deprecated.
GravesLSTM() - Constructor for class weka.dl4j.layers.GravesLSTM
Deprecated.
Constructor for setting some defaults.
GUIProgressBar - Class in weka.core.progress
Progress bar panel displayed in the GUI.
GUIProgressBar(double, String) - Constructor for class weka.core.progress.GUIProgressBar
Init the GUI progress bar

H

hasLearningRate() - Method in class weka.dl4j.updater.AdaDelta
 
hasLearningRate() - Method in class weka.dl4j.updater.AdaGrad
 
hasLearningRate() - Method in class weka.dl4j.updater.Updater
 
hasMoreTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
 
hasMoreTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
 
hasNext() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Whether another batch of data is still available.
hasNext() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
hasNext() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
hasNext() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
hasNext() - Method in class weka.dl4j.iterators.provider.FileLabeledSentenceProvider
 
hasNext() - Method in class weka.dl4j.text.sentenceiterator.WekaInstanceSentenceIterator
 

I

IMAGE_FILE_EXTENSIONS - Static variable in class weka.gui.explorer.ExplorerDl4jInference
Allowable image file extensions.
ImageDirectoryLoader - Class in weka.core.converters
Loader for image datasets that are in a folder-organized fashion i.e., image class for an instance is inferred from the folder name it resides in.
ImageDirectoryLoader() - Constructor for class weka.core.converters.ImageDirectoryLoader
 
imageFromINDArray(INDArray) - Method in class weka.dl4j.interpretability.ScoreCAM
Takes an INDArray containing an image loaded using the native image loader libraries associated with DL4J, and converts it into a BufferedImage.
ImageInstanceIterator - Class in weka.dl4j.iterators.instance
An iterator that loads images.
ImageInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.ImageInstanceIterator
 
implementsMoreEfficientBatchPrediction() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Performs efficient batch prediction
InceptionResNetV2 - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of InceptionResNetV2.
InceptionResNetV2() - Constructor for class weka.dl4j.zoo.keras.InceptionResNetV2
Instantiate the model.
InceptionResNetV2.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.
InceptionV3 - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of InceptionV3.
InceptionV3() - Constructor for class weka.dl4j.zoo.keras.InceptionV3
Instantiate the model.
InceptionV3.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.
increment() - Method in class weka.core.progress.AbstractProgressBar
Helper methods so consumers don't need to keep track of iterations.
increment() - Method in class weka.core.progress.ProgressManager
Increment the progress bar.
inference() - Static method in class weka.examples.WekaDeeplearning4jExamples
 
inferLabelClasses() - Method in class weka.dl4j.ArffMetaDataLabelGenerator
 
init(DataSetIterator) - Method in class weka.dl4j.earlystopping.EarlyStopping
Initialize the underlying dl4j EarlyStopping object
init() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Initialize the ComputationGraph.
init(int, int, int, int, DataSetIterator, DataSetIterator) - Method in class weka.dl4j.listener.TrainingListener
Initialize the iterator with its necessary member variables
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.AbstractZooModel
Initialize the ZooModel as MLP.
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.CustomNet
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jAlexNet
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jDarknet19
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jInceptionResNetV1
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jLeNet
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jResNet50
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jSqueezeNet
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jVGG
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jXception
 
init() - Method in class weka.dl4j.zoo.keras.KerasZooModel
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasDenseNet
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasEfficientNet
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasInceptionV3
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasNASNet
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasResNet
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasVGG
 
init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasXception
 
initialize() - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Initialize the iterator
initialize() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
initialize() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
 
initialize() - Method in class weka.dl4j.text.stopwords.Dl4jAbstractStopwords
initializes the dictionary
initialize() - Method in class weka.dl4j.text.stopwords.Dl4jNull
 
initialize() - Method in class weka.dl4j.text.stopwords.Dl4jRainbow
Performs intialization of the scheme.
initialize() - Method in class weka.dl4j.text.stopwords.Dl4jWordsFromFile
Performs intialization of the scheme.
initializeBackend() - Method in class weka.dl4j.activations.ActivationCube
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationELU
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationHardSigmoid
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationHardTanH
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationIdentity
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationLReLU
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationRationalTanh
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationReLU
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationRReLU
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationSigmoid
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationSoftmax
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationSoftPlus
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationSoftSign
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationSwish
 
initializeBackend() - Method in class weka.dl4j.activations.ActivationTanH
 
initializeBackend() - Method in interface weka.dl4j.ApiWrapper
Initialize the DL4J backend.
initializeBackend() - Method in class weka.dl4j.distribution.BinomialDistribution
 
initializeBackend() - Method in class weka.dl4j.distribution.ConstantDistribution
 
initializeBackend() - Method in class weka.dl4j.distribution.Disabled
 
initializeBackend() - Method in class weka.dl4j.distribution.LogNormalDistribution
 
initializeBackend() - Method in class weka.dl4j.distribution.NormalDistribution
 
initializeBackend() - Method in class weka.dl4j.distribution.OrthogonalDistribution
 
initializeBackend() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
 
initializeBackend() - Method in class weka.dl4j.distribution.UniformDistribution
 
initializeBackend() - Method in class weka.dl4j.dropout.AlphaDropout
 
initializeBackend() - Method in class weka.dl4j.dropout.Disabled
 
initializeBackend() - Method in class weka.dl4j.dropout.Dropout
 
initializeBackend() - Method in class weka.dl4j.dropout.GaussianDropout
 
initializeBackend() - Method in class weka.dl4j.dropout.GaussianNoise
 
initializeBackend() - Method in enum weka.dl4j.enums.AlgoMode
 
initializeBackend() - Method in enum weka.dl4j.enums.ConvolutionMode
 
initializeBackend() - Method in enum weka.dl4j.enums.GradientNormalization
 
initializeBackend() - Method in enum weka.dl4j.enums.PoolingType
 
initializeBackend() - Method in enum weka.dl4j.enums.PretrainedType
 
initializeBackend() - Method in class weka.dl4j.layers.ActivationLayer
 
initializeBackend() - Method in class weka.dl4j.layers.BatchNormalization
 
initializeBackend() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
 
initializeBackend() - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
initializeBackend() - Method in class weka.dl4j.layers.ConvolutionLayer
 
initializeBackend() - Method in class weka.dl4j.layers.Cropping2D
 
initializeBackend() - Method in class weka.dl4j.layers.DenseLayer
 
initializeBackend() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
 
initializeBackend() - Method in class weka.dl4j.layers.DropoutLayer
 
initializeBackend() - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
initializeBackend() - Method in class weka.dl4j.layers.GravesLSTM
Deprecated.
 
initializeBackend() - Method in class weka.dl4j.layers.LocalResponseNormalization
 
initializeBackend() - Method in class weka.dl4j.layers.LossLayer
 
initializeBackend() - Method in class weka.dl4j.layers.LSTM
 
initializeBackend() - Method in class weka.dl4j.layers.OutputLayer
 
initializeBackend() - Method in class weka.dl4j.layers.RnnOutputLayer
 
initializeBackend() - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
 
initializeBackend() - Method in class weka.dl4j.layers.SubsamplingLayer
 
initializeBackend() - Method in class weka.dl4j.layers.ZeroPaddingLayer
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossFMeasure
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossHinge
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossKLD
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossL1
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossL2
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMAPE
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMCXENT
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMixtureDensity
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMSE
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMSLE
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMultiLabel
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossPoisson
 
initializeBackend() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
 
initializeBackend() - Method in class weka.dl4j.schedules.ConstantSchedule
 
initializeBackend() - Method in class weka.dl4j.schedules.ExponentialSchedule
 
initializeBackend() - Method in class weka.dl4j.schedules.InverseSchedule
 
initializeBackend() - Method in class weka.dl4j.schedules.MapSchedule
 
initializeBackend() - Method in class weka.dl4j.schedules.PolySchedule
 
initializeBackend() - Method in enum weka.dl4j.schedules.ScheduleType
 
initializeBackend() - Method in class weka.dl4j.schedules.SigmoidSchedule
 
initializeBackend() - Method in class weka.dl4j.schedules.StepSchedule
 
initializeBackend() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
 
initializeBackend() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
 
initializeBackend() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
 
initializeBackend() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
 
initializeBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
 
initializeBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
 
initializeBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
 
initializeBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
 
initializeBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
 
initializeBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
 
initializeBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
 
initializeBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
 
initializeBackend() - Method in class weka.dl4j.updater.AdaDelta
 
initializeBackend() - Method in class weka.dl4j.updater.AdaGrad
 
initializeBackend() - Method in class weka.dl4j.updater.Adam
 
initializeBackend() - Method in class weka.dl4j.updater.AdaMax
 
initializeBackend() - Method in class weka.dl4j.updater.Nadam
 
initializeBackend() - Method in class weka.dl4j.updater.Nesterovs
 
initializeBackend() - Method in class weka.dl4j.updater.NoOp
 
initializeBackend() - Method in class weka.dl4j.updater.RmsProp
 
initializeBackend() - Method in class weka.dl4j.updater.Sgd
 
initializeBackend() - Method in class weka.dl4j.weightnoise.Disabled
 
initializeBackend() - Method in class weka.dl4j.weightnoise.DropConnect
 
initializeBackend() - Method in class weka.dl4j.weightnoise.WeightNoise
 
initializeClassifier(Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
The method used to initialize the classifier.
initializeClassifier(Instances) - Method in class weka.classifiers.functions.RnnSequenceClassifier
The method used to initialize the classifier.
initOnGUI(int, int) - Method in class weka.gui.explorer.ClassSelector
Init the GUI elements.
initPretrained(PretrainedType) - Method in class weka.dl4j.zoo.keras.KerasZooModel
 
initWordVectors() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
Initialize the word vectors from the given file
initZooModel(ZooModel, ComputationGraph, long, int, boolean) - Method in class weka.dl4j.zoo.AbstractZooModel
Initialize the zoo model with the supplied params.
inputColumns() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Returns the number of input columns.
inputColumns() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
inputColumns() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
inputShape - Static variable in class weka.dl4j.zoo.keras.DenseNet
Default input shape of the model.
inputShape - Static variable in class weka.dl4j.zoo.keras.EfficientNet
Default input shape of the model.
inputShape - Static variable in class weka.dl4j.zoo.keras.InceptionResNetV2
Default input shape of the model.
inputShape - Static variable in class weka.dl4j.zoo.keras.InceptionV3
Default input shape of the model.
inputShape - Static variable in class weka.dl4j.zoo.keras.MobileNet
Default input shape of the model.
inputShape - Static variable in class weka.dl4j.zoo.keras.NASNet
Default input shape of the model.
inputShape - Static variable in class weka.dl4j.zoo.keras.ResNet
Default input shape of the model.
inputShape - Static variable in class weka.dl4j.zoo.keras.VGG
Default input shape of the model.
inputShape - Static variable in class weka.dl4j.zoo.keras.Xception
Default input shape of the model.
instancesToConvDataSet(Instances, int, int, int) - Static method in class weka.dl4j.Utils
Converts a set of training instances to a DataSet prepared for the convolution operation using the height, width and number of channels.
instancesToDataSet(Instances) - Static method in class weka.dl4j.Utils
Converts a set of training instances to a DataSet.
InvalidInputDataException - Exception in weka.core
Exception raised in the case of an invalid input data
InvalidInputDataException(String) - Constructor for exception weka.core.InvalidInputDataException
 
InvalidInputDataException(String, Throwable) - Constructor for exception weka.core.InvalidInputDataException
 
InvalidLayerConfigurationException - Exception in weka.core
Exception raised when the the configuration is invalid.
InvalidLayerConfigurationException(String, Layer) - Constructor for exception weka.core.InvalidLayerConfigurationException
 
InvalidLayerConfigurationException(String, Layer, Throwable) - Constructor for exception weka.core.InvalidLayerConfigurationException
 
InvalidNetworkArchitectureException - Exception in weka.core
Exception raised when the the network architecture is invalid.
InvalidNetworkArchitectureException(String) - Constructor for exception weka.core.InvalidNetworkArchitectureException
 
InvalidNetworkArchitectureException(String, Throwable) - Constructor for exception weka.core.InvalidNetworkArchitectureException
 
InvalidValidationPercentageException - Exception in weka.core
Exception raised in the case of a validation percentage which might be too low / too high
InvalidValidationPercentageException(String) - Constructor for exception weka.core.InvalidValidationPercentageException
 
InvalidValidationPercentageException(String, Throwable) - Constructor for exception weka.core.InvalidValidationPercentageException
 
InverseSchedule - Class in weka.dl4j.schedules
Inverse exponential schedule for learning rates.
InverseSchedule() - Constructor for class weka.dl4j.schedules.InverseSchedule
 
invokeMethod(Object, String, Object...) - Static method in class weka.dl4j.Utils
Invoke a method on a given object.
isAdditive() - Method in class weka.dl4j.weightnoise.WeightNoise
 
isAllowParallelTokenization() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
isAppend() - Method in class weka.core.LogConfiguration
 
isApplyToBias() - Method in class weka.dl4j.weightnoise.WeightNoise
 
isChannelsLast(INDArray) - Static method in class weka.dl4j.Utils
Shape will either be something like [1, 56, 56, 128] or [1, 128, 56, 56] If it's the former then return true.
isCollapseDimensions() - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
isCustom() - Method in enum weka.dl4j.enums.PoolingType
NONE and MIN are not DL4J pooling types, only used for pooling activations
isEnableScavenger() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
isFilterMode() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
IsGPUAvailable - Class in weka.dl4j
 
IsGPUAvailable() - Constructor for class weka.dl4j.IsGPUAvailable
 
isImage(String) - Method in class weka.core.converters.ImageDirectoryLoader
Check whether the supplied path is a valid image.
isImageChannelsLast() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
isIndeterminate() - Method in class weka.core.progress.AbstractProgressBar
Gets the indeterminate status of the progress bar
isIntermediateEvaluationsEnabled() - Method in class weka.dl4j.listener.EpochListener
 
isLockGammaBeta() - Method in class weka.dl4j.layers.BatchNormalization
 
isMetaArff(Instances) - Static method in class weka.dl4j.iterators.instance.ImageInstanceIterator
Are the input instances from a 'meta' arff (just points to the image location)
isMiniBatch() - Method in class weka.dl4j.NeuralNetConfiguration
 
isMinimize() - Method in class weka.dl4j.NeuralNetConfiguration
 
isPretrained() - Method in class weka.dl4j.zoo.AbstractZooModel
 
isRequiresPooling() - Method in class weka.dl4j.zoo.AbstractZooModel
 
isSentencesAlongHeight() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
isUseAdaGrad() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
isUseHierarchicSoftmax() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
isValidOutputLayer(boolean, Layer) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
Checks if the layer is a valid output layer
iterationDone(Model, int, int) - Method in class weka.dl4j.listener.TrainingListener
 
iterationIncremented() - Method in interface weka.dl4j.interpretability.listeners.IterationIncrementListener
Called when iterations incremented.
IterationIncrementListener - Interface in weka.dl4j.interpretability.listeners
Event listener for when iterations increment.
iterationsFinished() - Method in interface weka.dl4j.interpretability.listeners.IterationsFinishedListener
Called when iterations finish.
IterationsFinishedListener - Interface in weka.dl4j.interpretability.listeners
Event listener for when iterations finish.
iterationsStarted(int) - Method in interface weka.dl4j.interpretability.listeners.IterationsStartedListener
Called when iterations start.
IterationsStartedListener - Interface in weka.dl4j.interpretability.listeners
Event listener for when iterations increment.

K

KerasConstants - Class in weka.dl4j.zoo.keras
Simple class to hold URLs and checksums of all Keras models in WDL4J.
KerasConstants() - Constructor for class weka.dl4j.zoo.keras.KerasConstants
 
KerasDenseNet - Class in weka.dl4j.zoo
Wrapper class for Keras version of DenseNet.
KerasDenseNet() - Constructor for class weka.dl4j.zoo.KerasDenseNet
Instantiate the model.
KerasEfficientNet - Class in weka.dl4j.zoo
Wrapper class for Keras version of EfficientNet.
KerasEfficientNet() - Constructor for class weka.dl4j.zoo.KerasEfficientNet
Instantiate the model.
KerasInceptionResNetV2 - Class in weka.dl4j.zoo
 
KerasInceptionResNetV2() - Constructor for class weka.dl4j.zoo.KerasInceptionResNetV2
 
KerasInceptionV3 - Class in weka.dl4j.zoo
Wrapper class for Keras version of InceptionV3.
KerasInceptionV3() - Constructor for class weka.dl4j.zoo.KerasInceptionV3
Instantiate the model.
KerasMobileNet - Class in weka.dl4j.zoo
 
KerasMobileNet() - Constructor for class weka.dl4j.zoo.KerasMobileNet
 
KerasModelConverter - Class in weka.dl4j.scripts.keras_downloading
This class loads in a folder of Keras files, and one by one converts them into the native DL4J format (.zip).
KerasModelConverter() - Constructor for class weka.dl4j.scripts.keras_downloading.KerasModelConverter
 
KerasNASNet - Class in weka.dl4j.zoo
Wrapper class for Keras version of NASNet.
KerasNASNet() - Constructor for class weka.dl4j.zoo.KerasNASNet
Instantiate the model.
KerasResNet - Class in weka.dl4j.zoo
Wrapper class for Keras version of ResNet.
KerasResNet() - Constructor for class weka.dl4j.zoo.KerasResNet
Instantiate the model.
KerasVGG - Class in weka.dl4j.zoo
Wrapper class for Keras version of VGG.
KerasVGG() - Constructor for class weka.dl4j.zoo.KerasVGG
Instantiate the model.
KerasXception - Class in weka.dl4j.zoo
Wrapper class for Keras version of Xception.
KerasXception() - Constructor for class weka.dl4j.zoo.KerasXception
Instantiate the model.
KerasZooModel - Class in weka.dl4j.zoo.keras
This class essentially copies DL4J's ZooModel class, allowing the custom Keras models to provide the same interface as those models provided by DL4J.
KerasZooModel() - Constructor for class weka.dl4j.zoo.keras.KerasZooModel
 

L

Layer<T extends org.deeplearning4j.nn.conf.layers.Layer> - Class in weka.dl4j.layers
Abstract layer class.
Layer() - Constructor for class weka.dl4j.layers.Layer
 
listOptions() - Method in class weka.core.converters.ImageDirectoryLoader
Returns an enumeration describing the available options.
listOptions() - Method in class weka.core.LogConfiguration
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.Activation
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationCube
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationELU
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationHardSigmoid
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationHardTanH
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationIdentity
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationLReLU
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationRationalTanh
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationReLU
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationRReLU
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSigmoid
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSoftmax
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSoftPlus
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSoftSign
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSwish
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationTanH
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.BinomialDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.ConstantDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.Distribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.LogNormalDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.NormalDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.OrthogonalDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.UniformDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.dropout.AbstractDropout
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.dropout.AlphaDropout
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.dropout.Dropout
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.dropout.GaussianDropout
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.dropout.GaussianNoise
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.earlystopping.EarlyStopping
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.inference.CustomModelSetup
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.inference.ModelOutputDecoder
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.IsGPUAvailable
Returns an enumeration of all the available options..
listOptions() - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.ActivationLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.BatchNormalization
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.CenterLossOutputLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.ConvolutionLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.Cropping2D
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.DenseLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.DropoutLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.FeedForwardLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.GlobalPoolingLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.GravesLSTM
Deprecated.
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.Layer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.LocalResponseNormalization
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.LossLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.LSTM
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.NoParamLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.OutputLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.RnnOutputLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.SameDiffLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.SubsamplingLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.ZeroPaddingLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.listener.TrainingListener
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossFMeasure
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossHinge
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossKLD
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossL1
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossL2
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMAE
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMAPE
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMCXENT
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMixtureDensity
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMSE
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMSLE
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMultiLabel
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossPoisson
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.NeuralNetConfiguration
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.schedules.ConstantSchedule
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.schedules.ExponentialSchedule
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.schedules.InverseSchedule
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.schedules.MapSchedule
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.schedules.PolySchedule
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.schedules.Schedule
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.schedules.SigmoidSchedule
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.schedules.StepSchedule
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.StepFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.AdaDelta
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.AdaGrad
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.Adam
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.AdaMax
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.Nadam
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.Nesterovs
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.RmsProp
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.Sgd
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.updater.Updater
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.weightnoise.DropConnect
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.weightnoise.WeightNoise
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.zoo.AbstractZooModel
Returns an enumeration describing the available options.
listOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
Returns an enumeration describing the available options.
listOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
listOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
loadInferenceModel(File, AbstractZooModel) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
Load a Dl4jMlpClassifier for use in the Inference Panel - no need to supply Instances or InstanceIterators
loadModel(Instances, File, AbstractZooModel, AbstractInstanceIterator) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
Load a Dl4jMlpClassifier for use with the given instances and iterator
loadZooModelNoData(int, long, int[]) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Load a ComputationGraph without any data - used in the Dl4j Inference panel
LocalResponseNormalization - Class in weka.dl4j.layers
A version of DeepLearning4j's LocalResponseNormalization layer that implements WEKA option handling.
LocalResponseNormalization() - Constructor for class weka.dl4j.layers.LocalResponseNormalization
Constructor for setting some defaults.
Locations - Static variable in class weka.dl4j.zoo.keras.KerasConstants
URLs of model files.
log(String) - Method in class weka.dl4j.listener.EpochListener
 
log(String) - Method in class weka.dl4j.listener.TrainingListener
Log a message
LogConfiguration - Class in weka.core
General logger configuration.
LogConfiguration() - Constructor for class weka.core.LogConfiguration
 
LogConfiguration.LogLevel - Enum in weka.core
Available log levels.
LogNormalDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's LogNormalDistribution that implements WEKA option handling.
LogNormalDistribution() - Constructor for class weka.dl4j.distribution.LogNormalDistribution
 
LossBinaryXENT - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossBinaryXENT that implements WEKA option handling.
LossBinaryXENT() - Constructor for class weka.dl4j.lossfunctions.LossBinaryXENT
 
LossCosineProximity - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossCosineProximity that implements WEKA option handling.
LossCosineProximity() - Constructor for class weka.dl4j.lossfunctions.LossCosineProximity
 
LossFMeasure - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossFMeasure that implements WEKA option handling.
LossFMeasure() - Constructor for class weka.dl4j.lossfunctions.LossFMeasure
 
LossFunction<T extends org.nd4j.linalg.lossfunctions.ILossFunction> - Class in weka.dl4j.lossfunctions
 
LossFunction() - Constructor for class weka.dl4j.lossfunctions.LossFunction
 
LossHinge - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossHinge that implements WEKA option handling.
LossHinge() - Constructor for class weka.dl4j.lossfunctions.LossHinge
 
LossKLD - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossKLD that implements WEKA option handling.
LossKLD() - Constructor for class weka.dl4j.lossfunctions.LossKLD
 
LossL1 - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossL1 that implements WEKA option handling.
LossL1() - Constructor for class weka.dl4j.lossfunctions.LossL1
 
LossL2 - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossL2 that implements WEKA option handling.
LossL2() - Constructor for class weka.dl4j.lossfunctions.LossL2
 
LossLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's LossLayer layer that implements WEKA option handling.
LossLayer() - Constructor for class weka.dl4j.layers.LossLayer
Constructor for setting some defaults.
LossMAE - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMAE that implements WEKA option handling.
LossMAE() - Constructor for class weka.dl4j.lossfunctions.LossMAE
 
LossMAPE - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMAPE that implements WEKA option handling.
LossMAPE() - Constructor for class weka.dl4j.lossfunctions.LossMAPE
 
LossMCXENT - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMCXENT that implements WEKA option handling.
LossMCXENT() - Constructor for class weka.dl4j.lossfunctions.LossMCXENT
 
LossMixtureDensity - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMixtureDensity that implements WEKA option handling.
LossMixtureDensity() - Constructor for class weka.dl4j.lossfunctions.LossMixtureDensity
 
LossMSE - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMSE that implements WEKA option handling.
LossMSE() - Constructor for class weka.dl4j.lossfunctions.LossMSE
 
LossMSLE - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMSLE that implements WEKA option handling.
LossMSLE() - Constructor for class weka.dl4j.lossfunctions.LossMSLE
 
LossMultiLabel - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMultiLabel that implements WEKA option handling.
LossMultiLabel() - Constructor for class weka.dl4j.lossfunctions.LossMultiLabel
 
LossNegativeLogLikelihood - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossNegativeLogLikelihood that implements WEKA option handling.
LossNegativeLogLikelihood() - Constructor for class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
 
LossPoisson - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossPoisson that implements WEKA option handling.
LossPoisson() - Constructor for class weka.dl4j.lossfunctions.LossPoisson
 
LossSquaredHinge - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossSquaredHinge that implements WEKA option handling.
LossSquaredHinge() - Constructor for class weka.dl4j.lossfunctions.LossSquaredHinge
 
LowCasePreProcessor - Class in weka.dl4j.text.tokenization.preprocessor
A wrapper that extends the PreProcessor API for LowCasePreProcessorImpl.
LowCasePreProcessor() - Constructor for class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
 
LowCasePreProcessorImpl - Class in weka.dl4j.text.tokenization.preprocessor.impl
A serializable version of DeepLearning4j's LowCasePreProcessor.
LowCasePreProcessorImpl() - Constructor for class weka.dl4j.text.tokenization.preprocessor.impl.LowCasePreProcessorImpl
 
LSTM - Class in weka.dl4j.layers
A version of DeepLearning4j's LSTM layer that implements WEKA option handling.
LSTM() - Constructor for class weka.dl4j.layers.LSTM
Constructor for setting some defaults.

M

main(String[]) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
The main method for running this class.
main(String[]) - Static method in class weka.core.converters.ImageDirectoryLoader
Main entrypoint if invoking class independently
main(String[]) - Static method in class weka.core.converters.Word2VecLoader
Main method for testing this class.
main(String[]) - Static method in class weka.dl4j.scripts.keras_downloading.KerasModelConverter
Main entrypoint.
main(String[]) - Static method in class weka.examples.WekaDeeplearning4jExamples
 
MapSchedule - Class in weka.dl4j.schedules
Map schedule for learning rates.
MapSchedule() - Constructor for class weka.dl4j.schedules.MapSchedule
 
metaData() - Method in class weka.dl4j.zoo.keras.KerasZooModel
 
MissingOutputLayerException - Exception in weka.core
Exception raised in the case of a missing output layer as last layer
MissingOutputLayerException(String) - Constructor for exception weka.core.MissingOutputLayerException
 
MissingOutputLayerException(String, Throwable) - Constructor for exception weka.core.MissingOutputLayerException
 
MobileNet - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of MobileNet.
MobileNet() - Constructor for class weka.dl4j.zoo.keras.MobileNet
Instantiate the model.
MobileNet.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.
MODEL_FILE_EXTENSION - Static variable in class weka.gui.explorer.ExplorerDl4jInference
The filename extension that should be used for model files.
modelFamily() - Method in class weka.dl4j.zoo.keras.DenseNet
 
modelFamily() - Method in class weka.dl4j.zoo.keras.EfficientNet
 
modelFamily() - Method in class weka.dl4j.zoo.keras.InceptionResNetV2
 
modelFamily() - Method in class weka.dl4j.zoo.keras.InceptionV3
 
modelFamily() - Method in class weka.dl4j.zoo.keras.KerasZooModel
Get the model family.
modelFamily() - Method in class weka.dl4j.zoo.keras.MobileNet
 
modelFamily() - Method in class weka.dl4j.zoo.keras.NASNet
 
modelFamily() - Method in class weka.dl4j.zoo.keras.ResNet
 
modelFamily() - Method in class weka.dl4j.zoo.keras.VGG
 
modelFamily() - Method in class weka.dl4j.zoo.keras.Xception
 
ModelOutputDecoder - Class in weka.dl4j.inference
Decodes model outputs into a human-readable and more workable format.
ModelOutputDecoder() - Constructor for class weka.dl4j.inference.ModelOutputDecoder
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.DenseNet
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.EfficientNet
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.InceptionResNetV2
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.InceptionV3
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.KerasZooModel
Get the pretty name of the model (e.g., ResNet 50)
modelPrettyName() - Method in class weka.dl4j.zoo.keras.MobileNet
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.NASNet
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.ResNet
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.VGG
 
modelPrettyName() - Method in class weka.dl4j.zoo.keras.Xception
 
modelType() - Method in class weka.dl4j.zoo.keras.KerasZooModel
 

N

Nadam - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's Nadam.
Nadam() - Constructor for class weka.dl4j.updater.Nadam
 
NASNet - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of NASNet.
NASNet() - Constructor for class weka.dl4j.zoo.keras.NASNet
Instantiate the model.
NASNet.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.
ndArrayToInstances(INDArray, Instances, Map<String, Long>) - Static method in class weka.dl4j.Utils
Convert an arbitrary NDArray to Weka instances.
needsReshaping(INDArray) - Static method in class weka.dl4j.Utils
Determines if the activations need reshaping.
NegativeDefaultStepFunction - Class in weka.dl4j.stepfunctions
A version of DeepLearning4j's NegativeDefaultStepFunction that implements WEKA option handling.
NegativeDefaultStepFunction() - Constructor for class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
 
NegativeGradientStepFunction - Class in weka.dl4j.stepfunctions
A version of DeepLearning4j's NegativeGradientStepFunction that implements WEKA option handling.
NegativeGradientStepFunction() - Constructor for class weka.dl4j.stepfunctions.NegativeGradientStepFunction
 
Nesterovs - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's Nesterovs.
Nesterovs() - Constructor for class weka.dl4j.updater.Nesterovs
 
NeuralNetConfiguration - Class in weka.dl4j
A version of DeepLearning4j's NeuralNetConfiguration that implements WEKA option handling.
NeuralNetConfiguration() - Constructor for class weka.dl4j.NeuralNetConfiguration
Constructor that provides default values for the settings.
next() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Perform another epoch.
next() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Returns the next mini batch of data.
next(int) - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Returns a batch of the given size
next(int) - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
next() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
next(int) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
next(int) - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
next() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
nextSentence() - Method in class weka.dl4j.iterators.provider.FileLabeledSentenceProvider
 
nextSentence() - Method in class weka.dl4j.text.sentenceiterator.WekaInstanceSentenceIterator
 
nextToken() - Method in class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
 
nextToken() - Method in class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
 
NGramTokenizerFactory - Class in weka.dl4j.text.tokenization.tokenizer.factory
A DeepLearning4j's TokenizerFactory interface for Weka core tokenizers.
NGramTokenizerFactory() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
 
NGramTokenizerFactoryImpl - Class in weka.dl4j.text.tokenization.tokenizer.factory.impl
A DeepLearning4j's TokenizerFactory interface for Weka core tokenizers.
NGramTokenizerFactoryImpl() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
NoOp - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's ConstantScheduleImpl.
NoOp() - Constructor for class weka.dl4j.updater.NoOp
 
NoParamLayer<T extends org.deeplearning4j.nn.conf.layers.NoParamLayer> - Class in weka.dl4j.layers
Wrapper for DL4J NoParamLayer.
NoParamLayer() - Constructor for class weka.dl4j.layers.NoParamLayer
 
NormalDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's NormalDistribution that implements WEKA option handling.
NormalDistribution() - Constructor for class weka.dl4j.distribution.NormalDistribution
 
notDefaultFileLocation(File) - Static method in class weka.dl4j.Utils
Checks if the given file isn't the default file location (i.e., the user has selected a file).
numExamples() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
numExamples() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
numLabelClasses() - Method in class weka.dl4j.iterators.provider.CollectionLabeledSentenceProvider
 
numLabelClasses() - Method in class weka.dl4j.iterators.provider.FileLabeledSentenceProvider
 

O

onEpochEnd(Model) - Method in class weka.dl4j.listener.EpochListener
 
open(Dl4jCNNExplorer) - Method in class weka.gui.explorer.SaliencyMapWindow
Show the saliency map.
OrthogonalDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's OrthogonalDistribution that implements WEKA option handling.
OrthogonalDistribution() - Constructor for class weka.dl4j.distribution.OrthogonalDistribution
 
OutputLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's OutputLayer that implements WEKA option handling.
OutputLayer() - Constructor for class weka.dl4j.layers.OutputLayer
Constructor for setting some defaults.
outputSingle(INDArray) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Convenience method to allow the Dl4j Inference panel to call outputSingle for a single image

P

parseClassmap(Instances) - Static method in class weka.dl4j.inference.ModelOutputDecoder
Get a classmap from a set of instances.
parseClassmapFromArff(String) - Static method in class weka.dl4j.inference.ModelOutputDecoder
Parse a classmap from a valid .arff file.
parseClassmapFromCsv(String) - Static method in class weka.dl4j.inference.ModelOutputDecoder
Parse a classmap from a valid .csv dataset.
pathExists(String) - Static method in class weka.dl4j.Utils
Checks whether the path exists - a little tidier than the code it wraps.
PMML_FILE_EXTENSION - Static variable in class weka.gui.explorer.ExplorerDl4jInference
The filename extension that should be used for PMML xml files.
PolySchedule - Class in weka.dl4j.schedules
Polynomial decay schedule for learning rates.
PolySchedule() - Constructor for class weka.dl4j.schedules.PolySchedule
 
PoolingType - Enum in weka.dl4j.enums
Proxy Enum for PoolingType.
poolNDArray(INDArray, PoolingType) - Static method in class weka.dl4j.Utils
Applies the pooling function to the given feature map.
postExecution() - Method in class weka.core.converters.ImageDirectoryLoader
 
postExecution() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Perform any teardown stuff that might need to happen after execution.
postExecution() - Method in class weka.dl4j.IsGPUAvailable
Perform any teardown stuff that might need to happen after execution.
Prediction - Class in weka.dl4j.inference
Simple immutable class to hold the necessary values for prediction.
Prediction(PredictionClass, double) - Constructor for class weka.dl4j.inference.Prediction
Create a new prediction from the given class and probability.
Prediction(int, String, double) - Constructor for class weka.dl4j.inference.Prediction
Create a new prediction class.
PredictionClass - Class in weka.dl4j.inference
Wrapper class to hold a class ID and classname.
PredictionClass(int, String) - Constructor for class weka.dl4j.inference.PredictionClass
Create a new PredictionClass.
preExecution() - Method in class weka.core.converters.ImageDirectoryLoader
 
preExecution() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Perform any setup stuff that might need to happen before execution.
preExecution() - Method in class weka.dl4j.IsGPUAvailable
Perform any setup stuff that might need to happen before execution.
Preferences - Class in weka.dl4j
Preferences class for Deeplearning4j/Nd4j static settings that should be used across the package.
Preferences() - Constructor for class weka.dl4j.Preferences
 
preProcess(String) - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
 
pretrainedChecksum(PretrainedType) - Method in class weka.dl4j.zoo.keras.KerasZooModel
 
PretrainedType - Enum in weka.dl4j.enums
Proxy Enum for PretrainedType.
pretrainedUrl(PretrainedType) - Method in class weka.dl4j.zoo.keras.KerasZooModel
 
process(INDArray, String[]) - Method in class weka.dl4j.inference.TopNPredictions
Main entrypoint, decodes predictions into a TopNPredictions object.
processImage(File) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Performs prediction and (optionally) computes a saliency map.
processImage(File) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
Main processing entrypoint.
processImage(File) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
Main processing entrypoint.
processImage(File) - Method in class weka.dl4j.interpretability.ScoreCAM
 
processImage(File) - Method in class weka.dl4j.interpretability.WekaScoreCAM
 
ProgressManager - Class in weka.core.progress
Main entrypoint for any progress-bar related tasks.
ProgressManager(double, String) - Constructor for class weka.core.progress.ProgressManager
Init a new progress manager, setting the maximum progress and progress message.
ProgressManager(String) - Constructor for class weka.core.progress.ProgressManager
Init a new indeterminate progress manager (no notion of iterating progress).
ProgressManager() - Constructor for class weka.core.progress.ProgressManager
Init the progress manager.

R

refreshDisplay() - Method in class weka.core.progress.AbstractProgressBar
Update the progress bar display.
refreshDisplay() - Method in class weka.core.progress.CommandLineProgressBar
Update the progress bar display.
refreshDisplay() - Method in class weka.core.progress.GUIProgressBar
Update the progress bar display.
RelationalDataSetIterator - Class in weka.dl4j.iterators.dataset.sequence
A DataSetIterator implementation that parses Instances with relational attributes.
RelationalDataSetIterator(Instances, int, int, int) - Constructor for class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
Constructor.
RelationalInstanceIterator - Class in weka.dl4j.iterators.instance.sequence
Converts the given Instances containing a single relational attribute into a DataSet.
RelationalInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
 
remove() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Enables removing of a mini-batch.
remove() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
removeFromParent() - Method in class weka.gui.explorer.ClassSelector
Remove ourselves from the parent panel.
requiresPreProcessing() - Method in class weka.dl4j.zoo.AbstractZooModel
Does the model require input images to be preprocessed?.
reset() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Resets the cursor.
reset() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
reset() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
reset() - Method in class weka.dl4j.iterators.provider.FileLabeledSentenceProvider
 
reset() - Method in class weka.dl4j.text.sentenceiterator.WekaInstanceSentenceIterator
 
resetModelFilepath() - Method in class weka.dl4j.inference.CustomModelSetup
Reset the model filepath to the default.
resetSupported() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Whether the iterator can be reset.
resetSupported() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
resetSupported() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
reshapeActivations(INDArray, PoolingType) - Static method in class weka.dl4j.Utils
Reshape the activations, either by pooling or simply multiplying the extra dimensions together.
ResizeImageInstanceIterator - Class in weka.dl4j.iterators.instance
An iterator that loads images and resizes them.
ResizeImageInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
Empty constructor for Weka
ResizeImageInstanceIterator(ImageInstanceIterator, int, int) - Constructor for class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
Default constructor with the new shape
ResNet - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of ResNet.
ResNet() - Constructor for class weka.dl4j.zoo.keras.ResNet
Instantiate the model.
ResNet.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.
ResourceResolver - Class in weka.dl4j
 
ResourceResolver() - Constructor for class weka.dl4j.ResourceResolver
 
RmsProp - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's RmsProp.
RmsProp() - Constructor for class weka.dl4j.updater.RmsProp
 
RnnOutputLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's RnnOutputLayer that implements WEKA option handling.
RnnOutputLayer() - Constructor for class weka.dl4j.layers.RnnOutputLayer
Constructor for setting some defaults.
RnnSequenceClassifier - Class in weka.classifiers.functions
A classifier that can handle sequences.
RnnSequenceClassifier() - Constructor for class weka.classifiers.functions.RnnSequenceClassifier
 
RnnTextEmbeddingDataSetIterator - Class in weka.dl4j.iterators.dataset.sequence.text.rnn
A DataSetIterator implementation that reads text documents from an arff file and translates each document to a sequence of wordvectors, given a wordvector model.
RnnTextEmbeddingDataSetIterator(Instances, WordVectors, TokenizerFactory, TokenPreProcess, AbstractStopwords, LabeledSentenceProvider, int, int) - Constructor for class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
Constructor with necessary objects to create RNN features.
RnnTextEmbeddingInstanceIterator - Class in weka.dl4j.iterators.instance.sequence.text.rnn
Converts the given Instances object into a DataSet and then constructs and returns a RnnTextEmbeddingInstanceIterator.
RnnTextEmbeddingInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
 
RnnTextFilesEmbeddingInstanceIterator - Class in weka.dl4j.iterators.instance.sequence.text.rnn
Converts the given Instances object into a DataSet and then constructs and returns a RnnTextEmbeddingInstanceIterator.
RnnTextFilesEmbeddingInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
 
run(Object, String[]) - Method in class weka.core.converters.ImageDirectoryLoader
 
run() - Method in class weka.core.progress.GUIProgressBar
 
run(Object, String[]) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Execute the supplied object.
run(Object, String[]) - Method in class weka.dl4j.IsGPUAvailable
Execute the supplied object.
runWithLocalClassloader(Class, VoidCallable) - Static method in class weka.dl4j.Utils
Run some code-block using the local class loader from a given class.

S

SaliencyMapGBC() - Constructor for class weka.gui.explorer.SaliencyMapWindow.SaliencyMapGBC
Init.
SaliencyMapGBC(int) - Constructor for class weka.gui.explorer.SaliencyMapWindow.SaliencyMapGBC
Init.
SaliencyMapWindow - Class in weka.gui.explorer
JPanel showing the saliency map generated, as well as options for configuring it.
SaliencyMapWindow() - Constructor for class weka.gui.explorer.SaliencyMapWindow
Initialize the window.
SaliencyMapWindow.SaliencyMapGBC - Class in weka.gui.explorer
Wrapper class for GBC which defaults to inset size of 5.
SameDiffLayer<T extends org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer> - Class in weka.dl4j.layers
Abstract SameDiff layer.
SameDiffLayer() - Constructor for class weka.dl4j.layers.SameDiffLayer
 
saveResult(BufferedImage) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
Save the supplied composite image to a file.
Schedule<T extends org.nd4j.linalg.schedule.ISchedule> - Class in weka.dl4j.schedules
Default schedule interface that implements WEKA option handling.
Schedule() - Constructor for class weka.dl4j.schedules.Schedule
 
ScheduleType - Enum in weka.dl4j.schedules
Proxy Enum for ScheduleType.
ScoreCAM - Class in weka.dl4j.interpretability
Implementation of the ScoreCAM saliency map generation method.
ScoreCAM() - Constructor for class weka.dl4j.interpretability.ScoreCAM
 
SeperableConvolution2DLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's SeperableConvolution2DLayer that implements WEKA option handling.
SeperableConvolution2DLayer() - Constructor for class weka.dl4j.layers.SeperableConvolution2DLayer
Constructor for setting some defaults.
setAction(Dl4jStringToWordEmbeddings.Action) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setActivationFunction(Activation) - Method in class weka.dl4j.layers.ActivationLayer
 
setActivationFunction(Activation) - Method in class weka.dl4j.layers.FeedForwardLayer
 
setAdditive(boolean) - Method in class weka.dl4j.weightnoise.WeightNoise
 
setAllowParallelTokenization(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setAlpha(double) - Method in class weka.dl4j.activations.ActivationELU
 
setAlpha(double) - Method in class weka.dl4j.activations.ActivationLReLU
 
setAlpha(double) - Method in class weka.dl4j.dropout.AlphaDropout
 
setAlpha(double) - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
setAppend(boolean) - Method in class weka.core.LogConfiguration
Whether to append to the existing log file or not.
setApplyToBias(boolean) - Method in class weka.dl4j.weightnoise.WeightNoise
 
setBackend(T) - Method in class weka.dl4j.activations.Activation
 
setBackend(ActivationELU) - Method in class weka.dl4j.activations.ActivationELU
 
setBackend(ActivationRReLU) - Method in class weka.dl4j.activations.ActivationRReLU
 
setBackend(T) - Method in interface weka.dl4j.ApiWrapper
Set the DL4J backend.
setBackend(T) - Method in class weka.dl4j.distribution.Distribution
 
setBackend(T) - Method in class weka.dl4j.dropout.AbstractDropout
 
setBackend(ConvolutionLayer.AlgoMode) - Method in enum weka.dl4j.enums.AlgoMode
 
setBackend(ConvolutionMode) - Method in enum weka.dl4j.enums.ConvolutionMode
 
setBackend(GradientNormalization) - Method in enum weka.dl4j.enums.GradientNormalization
 
setBackend(PoolingType) - Method in enum weka.dl4j.enums.PoolingType
 
setBackend(PretrainedType) - Method in enum weka.dl4j.enums.PretrainedType
 
setBackend(CustomBroadcast) - Method in class weka.dl4j.layers.BroadcastLambdaLayer
 
setBackend(T) - Method in class weka.dl4j.layers.Layer
 
setBackend(T) - Method in class weka.dl4j.lossfunctions.LossFunction
 
setBackend(ConstantSchedule.ConstantScheduleImpl) - Method in class weka.dl4j.schedules.ConstantSchedule
 
setBackend(ExponentialSchedule) - Method in class weka.dl4j.schedules.ExponentialSchedule
 
setBackend(InverseSchedule) - Method in class weka.dl4j.schedules.InverseSchedule
 
setBackend(MapSchedule) - Method in class weka.dl4j.schedules.MapSchedule
 
setBackend(PolySchedule) - Method in class weka.dl4j.schedules.PolySchedule
 
setBackend(ScheduleType) - Method in enum weka.dl4j.schedules.ScheduleType
 
setBackend(SigmoidSchedule) - Method in class weka.dl4j.schedules.SigmoidSchedule
 
setBackend(StepSchedule) - Method in class weka.dl4j.schedules.StepSchedule
 
setBackend(T) - Method in class weka.dl4j.stepfunctions.StepFunction
 
setBackend(T) - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
 
setBackend(T) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
 
setBackend(T) - Method in class weka.dl4j.updater.Updater
 
setBackend(T) - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
 
setBatchSize(int) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
setBatchSize(int) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
setBatchSize(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setBeta(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setBeta1(double) - Method in class weka.dl4j.updater.Adam
 
setBeta1(double) - Method in class weka.dl4j.updater.AdaMax
 
setBeta1(double) - Method in class weka.dl4j.updater.Nadam
 
setBeta2(double) - Method in class weka.dl4j.updater.Adam
 
setBeta2(double) - Method in class weka.dl4j.updater.AdaMax
 
setBeta2(double) - Method in class weka.dl4j.updater.Nadam
 
setBiasInit(double) - Method in class weka.dl4j.NeuralNetConfiguration
 
setBiasUpdater(Updater) - Method in class weka.dl4j.NeuralNetConfiguration
 
setBuiltInClassMap(ClassmapType) - Method in class weka.dl4j.inference.ModelOutputDecoder
 
setCacheMode(CacheMode) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setChannelsLast(boolean) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
setChannelsLast(boolean) - Method in class weka.dl4j.zoo.AbstractZooModel
 
setClassMap(String[]) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
setClassMapFile(File) - Method in class weka.dl4j.inference.ModelOutputDecoder
 
setCollapseDimensions(boolean) - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
setComputationGraph(ComputationGraph) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
setConcat_words(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setConcatWords(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
 
setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setCudnnAlgoMode(AlgoMode) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setCudnnAlgoMode(AlgoMode) - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
 
setCursor(int) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
setCustomModelSetup(CustomModelSetup) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
setCustomModelSetup(CustomModelSetup) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
setDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setDecayRate(double) - Method in class weka.dl4j.schedules.StepSchedule
 
setDelimiters(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
setDelimiters(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
 
setDist(Distribution<? extends Distribution>) - Method in class weka.dl4j.NeuralNetConfiguration
 
setDistribution(Distribution<? extends Distribution>) - Method in class weka.dl4j.weightnoise.WeightNoise
 
setDl4jLogLevel(LogConfiguration.LogLevel) - Method in class weka.core.LogConfiguration
Set the Dl4j log level.
setDl4jMlpClassifier(Dl4jMlpClassifier) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
setDoNotClearFilesystemCache(boolean) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setDropout(AbstractDropout) - Method in class weka.dl4j.layers.DropoutLayer
 
setDropout(AbstractDropout) - Method in class weka.dl4j.NeuralNetConfiguration
 
setEarlyStopping(EarlyStopping) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setEmbedding_prefix(String) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setEnableScavenger(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setEpochs(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setEps(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setEps(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setEpsilon(double) - Method in class weka.dl4j.updater.AdaDelta
 
setEpsilon(double) - Method in class weka.dl4j.updater.AdaGrad
 
setEpsilon(double) - Method in class weka.dl4j.updater.Adam
 
setEpsilon(double) - Method in class weka.dl4j.updater.AdaMax
 
setEpsilon(double) - Method in class weka.dl4j.updater.Nadam
 
setEpsilon(double) - Method in class weka.dl4j.updater.RmsProp
 
setExplorer(Explorer) - Method in class weka.gui.explorer.ExplorerDl4jInference
Sets the Explorer to use as parent frame (used for sending notifications about changes in the data)
setExtraLayersToRemove(String[]) - Method in class weka.dl4j.zoo.AbstractZooModel
 
setFeatureExtractionLayer(String) - Method in class weka.dl4j.zoo.AbstractZooModel
 
setFieldValue(Object, String, T) - Static method in class weka.dl4j.Utils
Set private field of a given object.
setFilterMode(boolean) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setFilterType(SelectedTag) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setGain(double) - Method in class weka.dl4j.distribution.OrthogonalDistribution
 
setGamma(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setGamma(double) - Method in class weka.dl4j.schedules.ExponentialSchedule
 
setGamma(double) - Method in class weka.dl4j.schedules.InverseSchedule
 
setGamma(double) - Method in class weka.dl4j.schedules.SigmoidSchedule
 
setGateActivationFn(Activation) - Method in class weka.dl4j.layers.GravesLSTM
Deprecated.
 
setGateActivationFn(Activation) - Method in class weka.dl4j.layers.LSTM
 
setGenerateSaliencyMap(boolean) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
setGradientCheck(boolean) - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.NeuralNetConfiguration
 
setGradientNormalizationThreshold(double) - Method in class weka.dl4j.NeuralNetConfiguration
 
setHeight(int) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
 
setHeight(int) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
setHeight(int) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
setImageChannelsLast(boolean) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
setImageInstanceIterator(ImageInstanceIterator) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
setImagePreProcessingScaler(ImagePreProcessingScaler) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
setImagesLocation(File) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
setImagesLocation(File) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
setIndeterminate(boolean) - Method in class weka.core.progress.AbstractProgressBar
Sets the indeterminate status of the progress bar
setInitialValue(double) - Method in class weka.dl4j.schedules.ConstantSchedule
 
setInitialValue(double) - Method in class weka.dl4j.schedules.MapSchedule
Deprecated.
setInitialValue(double) - Method in class weka.dl4j.schedules.Schedule
 
setInputChannels(int) - Method in class weka.dl4j.inference.CustomModelSetup
 
setInputDirectory(File) - Method in class weka.core.converters.ImageDirectoryLoader
 
setInputFilename(String) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
setInputHeight(int) - Method in class weka.dl4j.inference.CustomModelSetup
 
setInputShape(int[][]) - Method in class weka.dl4j.zoo.keras.KerasZooModel
 
setInputWidth(int) - Method in class weka.dl4j.inference.CustomModelSetup
 
setInstanceIterator(AbstractInstanceIterator) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setInstanceIterator(AbstractInstanceIterator) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
setInstances(Instances) - Method in class weka.gui.explorer.ExplorerDl4jInference
Tells the panel to use a new set of instances.
setIntermediateEvaluationsEnabled(boolean) - Method in class weka.dl4j.listener.EpochListener
 
setIterationListener(TrainingListener) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setIterations(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setKernelSize(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setKernelSize(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setKernelSizeX(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setKernelSizeX(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setKernelSizeY(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setKernelSizeY(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setL1(double) - Method in class weka.dl4j.NeuralNetConfiguration
 
setL2(double) - Method in class weka.dl4j.NeuralNetConfiguration
 
setLambda(double) - Method in class weka.dl4j.dropout.AlphaDropout
 
setLambda(double) - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
setLayerName(String) - Method in class weka.dl4j.layers.Layer
 
setLayers(Layer...) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setLayerSize(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setLearningRate(double) - Method in class weka.dl4j.updater.AdaDelta
Set the learning rate
setLearningRate(double) - Method in class weka.dl4j.updater.Updater
Set the learning rate
setLearningRate(double) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setLearningRateSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.updater.Updater
Set the learning rate schedule
setLoadLayerSpecification(boolean) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setLockGammaAndBeta(boolean) - Method in class weka.dl4j.layers.BatchNormalization
 
setLockGammaBeta(boolean) - Method in class weka.dl4j.layers.BatchNormalization
 
setLog(Logger) - Method in class weka.gui.explorer.ExplorerDl4jInference
Sets the Logger to receive informational messages
setLogConfig(LogConfiguration) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Set the log configuration.
setLogFile(File) - Method in class weka.core.LogConfiguration
Set the log file
setLossFn(LossFunction<? extends ILossFunction>) - Method in class weka.dl4j.layers.CenterLossOutputLayer
 
setLossFn(LossFunction<? extends ILossFunction>) - Method in class weka.dl4j.layers.LossLayer
 
setLossFn(LossFunction<? extends ILossFunction>) - Method in class weka.dl4j.layers.OutputLayer
 
setLossFn(LossFunction<? extends ILossFunction>) - Method in class weka.dl4j.layers.RnnOutputLayer
 
setLower(double) - Method in class weka.dl4j.distribution.UniformDistribution
 
setLowerBound(double) - Method in class weka.dl4j.activations.ActivationRReLU
 
setMaxEpochsNoImprovement(int) - Method in class weka.dl4j.earlystopping.EarlyStopping
 
setMaxIter(int) - Method in class weka.dl4j.schedules.PolySchedule
 
setMaxProgress(double) - Method in class weka.core.progress.AbstractProgressBar
Set the max progress value
setMaxProgress(double) - Method in class weka.core.progress.ProgressManager
Set the maximum progress value of the progress bar
setMean(double) - Method in class weka.dl4j.distribution.LogNormalDistribution
 
setMean(double) - Method in class weka.dl4j.distribution.NormalDistribution
 
setMean(double) - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
 
setMinibatch(boolean) - Method in class weka.dl4j.layers.BatchNormalization
 
setMiniBatch(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
 
setMinimize(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
 
setMinLearningRate(double) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setMinWordFrequency(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setModelInputShape(InputType.InputTypeConvolutional) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
setModelInputShape(InputType.InputTypeConvolutional) - Method in class weka.dl4j.interpretability.ScoreCAM
 
setModelName(String) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
 
setModelOutputDecoder(ModelOutputDecoder) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
setMomentum(double) - Method in class weka.dl4j.updater.Nesterovs
 
setN(int) - Method in class weka.dl4j.inference.TopNPredictions
 
setN(int) - Method in class weka.dl4j.listener.EpochListener
 
setNd4jLogLevel(LogConfiguration.LogLevel) - Method in class weka.core.LogConfiguration
Set the Nd4j log level.
setNegative(double) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setNeuralNetConfiguration(NeuralNetConfiguration) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setNMax(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
 
setNMax(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
setNMax(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
setNMax(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
 
setNMin(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
 
setNMin(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
setNMin(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
setNMin(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
 
setNormalizeHeatmap(boolean) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
setNOut(long) - Method in class weka.dl4j.layers.BatchNormalization
Deprecated.
setNOut(long) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setNOut(long) - Method in class weka.dl4j.layers.FeedForwardLayer
 
setNumberOfTrials(int) - Method in class weka.dl4j.distribution.BinomialDistribution
 
setNumChannels(int) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
 
setNumChannels(int) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
setNumChannels(int) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
setNumEpochs(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setNumFExtractOutputs(int) - Method in class weka.dl4j.zoo.AbstractZooModel
 
setNumGPUs(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setOptimizationAlgo(OptimizationAlgorithm) - Method in class weka.dl4j.NeuralNetConfiguration
 
setOptions(String[]) - Method in class weka.core.converters.ImageDirectoryLoader
Parses a given list of options.
setOptions(String[]) - Method in class weka.core.LogConfiguration
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.Activation
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationCube
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationELU
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationHardSigmoid
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationHardTanH
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationIdentity
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationLReLU
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationRationalTanh
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationReLU
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationRReLU
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSigmoid
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftmax
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftPlus
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftSign
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSwish
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationTanH
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.BinomialDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.ConstantDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.Distribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.LogNormalDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.NormalDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.OrthogonalDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.UniformDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.dropout.AbstractDropout
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.dropout.AlphaDropout
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.dropout.Dropout
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.dropout.GaussianDropout
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.dropout.GaussianNoise
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.earlystopping.EarlyStopping
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.inference.CustomModelSetup
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.inference.ModelOutputDecoder
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.IsGPUAvailable
Sets the OptionHandler's options using the given list.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.ActivationLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.BatchNormalization
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.BroadcastLambdaLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.CenterLossOutputLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.ConvolutionLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.Cropping2D
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.DenseLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.DropoutLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.FeedForwardLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.GlobalPoolingLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.GravesLSTM
Deprecated.
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.Layer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.LocalResponseNormalization
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.LossLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.LSTM
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.NoParamLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.OutputLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.RnnOutputLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.SameDiffLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.SubsamplingLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.ZeroPaddingLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.listener.TrainingListener
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossCosineProximity
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossFMeasure
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossHinge
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossKLD
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossL1
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossL2
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMAE
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMAPE
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMCXENT
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMixtureDensity
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMSE
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMSLE
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMultiLabel
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossPoisson
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.NeuralNetConfiguration
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.schedules.ConstantSchedule
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.schedules.ExponentialSchedule
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.schedules.InverseSchedule
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.schedules.MapSchedule
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.schedules.PolySchedule
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.schedules.Schedule
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.schedules.SigmoidSchedule
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.schedules.StepSchedule
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.GradientStepFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.StepFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.AdaDelta
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.AdaGrad
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.Adam
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.AdaMax
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.Nadam
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.Nesterovs
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.RmsProp
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.Sgd
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.updater.Updater
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.weightnoise.DropConnect
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.weightnoise.WeightNoise
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.zoo.AbstractZooModel
Parses a given list of options.
setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
Parses a given list of options.
setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
Parses the options for this object.
setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
Parses the options for this object.
setOutputFile(File) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
setOutputFileName(String) - Method in class weka.core.converters.ImageDirectoryLoader
 
setOutputLayer(String) - Method in class weka.dl4j.zoo.AbstractZooModel
 
setP(double) - Method in class weka.dl4j.dropout.AlphaDropout
 
setP(double) - Method in class weka.dl4j.dropout.Dropout
 
setPadding(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setPadding(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPadding(int[]) - Method in class weka.dl4j.layers.ZeroPaddingLayer
 
setPaddingColumns(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setPaddingColumns(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPaddingColumns(int) - Method in class weka.dl4j.layers.ZeroPaddingLayer
 
setPaddingRows(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setPaddingRows(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPaddingRows(int) - Method in class weka.dl4j.layers.ZeroPaddingLayer
 
setParameterAveragingFrequency(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setPnorm(int) - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
setPnorm(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPoolingDimensions(int[]) - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
setPoolingType(PoolingType) - Method in class weka.dl4j.layers.GlobalPoolingLayer
 
setPoolingType(PoolingType) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPoolingType(PoolingType) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
setPower(double) - Method in class weka.dl4j.schedules.InverseSchedule
 
setPower(double) - Method in class weka.dl4j.schedules.PolySchedule
 
setPrefetchBufferSize(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setPreProcessor(DataSetPreProcessor) - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Sets the preprocessor.
setPreProcessor(DataSetPreProcessor) - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
setPreProcessor(DataSetPreProcessor) - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
setPreProcessor(TokenPreProcess) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
Sets the preprocessor action.
setPretrainedType(PretrainedType) - Method in class weka.dl4j.zoo.AbstractZooModel
 
setPretrainedType(PretrainedType) - Method in class weka.dl4j.zoo.Dl4jVGG
 
setProbabilityOfSuccess(double) - Method in class weka.dl4j.distribution.BinomialDistribution
 
setProgress(double) - Method in class weka.core.progress.AbstractProgressBar
Main update method.
setProgress(double) - Method in class weka.core.progress.ProgressManager
Set the progress to a specific value
setProgressMessage(String) - Method in class weka.core.progress.AbstractProgressBar
Set the progress message
setProgressMessage(String) - Method in class weka.core.progress.ProgressManager
Set the progress message to be displayed in the progress bar
setpSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.dropout.AlphaDropout
 
setpSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.dropout.Dropout
 
setQueueSize(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setRateSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.dropout.GaussianDropout
 
setRateSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.dropout.GaussianNoise
 
setRelationalAttributeIndex(int) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
 
setRequiresPooling(boolean) - Method in class weka.dl4j.zoo.AbstractZooModel
 
setResume(boolean) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
If called with argument true, then the next time done() is called the model is effectively "frozen" and no further iterations can be performed
setRho(double) - Method in class weka.dl4j.updater.AdaDelta
 
setRmsDecay(double) - Method in class weka.dl4j.updater.RmsProp
 
setSaliencyMapWrapper(AbstractCNNSaliencyMapWrapper) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
setSampling(double) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setScheduleType(ScheduleType) - Method in class weka.dl4j.schedules.Schedule
 
setSeed(long) - Method in class weka.dl4j.NeuralNetConfiguration
 
setSeed(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setSerializedModelFile(File) - Method in class weka.dl4j.inference.CustomModelSetup
 
setSerializedModelFile(File) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
setSource(File) - Method in class weka.core.converters.ImageDirectoryLoader
 
setSource(File) - Method in class weka.core.converters.Word2VecLoader
Resets the Loader object and sets the source of the data set to be the supplied File object.
setStd(double) - Method in class weka.dl4j.distribution.LogNormalDistribution
 
setStd(double) - Method in class weka.dl4j.distribution.NormalDistribution
 
setStd(double) - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
 
setStdDev(double) - Method in class weka.dl4j.dropout.GaussianNoise
 
setStemmer(Stemmer) - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
 
setStemmer(Stemmer) - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
 
setStep(double) - Method in class weka.dl4j.schedules.StepSchedule
 
setStepSize(int) - Method in class weka.dl4j.schedules.SigmoidSchedule
 
setStopwords(Dl4jAbstractStopwords) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
setStopWordsHandler(Dl4jAbstractStopwords) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setStride(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setStride(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setStrideColumns(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setStrideColumns(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setStrideRows(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setStrideRows(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setStructure() - Method in class weka.core.converters.Word2VecLoader
 
setTargetClass(int) - Method in class weka.gui.explorer.ClassSelector
 
setTargetClassIDs(String) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
setTargetClassIDsAsInt(int[]) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
 
settBPTTbackwardLength(int) - Method in class weka.classifiers.functions.RnnSequenceClassifier
 
settBPTTforwardLength(int) - Method in class weka.classifiers.functions.RnnSequenceClassifier
 
setTextIndex(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
Set the attribute's index with the string to process.
setTextsLocation(File) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
 
setTextsLocation(File) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
 
setTokenizerFactory(TokenizerFactory) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
setTokenizerFactory(TokenizerFactory) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setTokenPreProcess(TokenPreProcess) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
 
setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
 
setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
 
setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
 
setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
 
setTrainBatchSize(int) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Setting the training batch size
setTrainBatchSize(int) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
setTransformationLayerNames(String[]) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
setTransformationLayers(DenseLayer[]) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
setTruncateLength(int) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
 
setTruncateLength(int) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
setUnknown(INDArray) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
setUnknownWordHandling(CnnSentenceDataSetIterator.UnknownWordHandling) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
setUpdater(Updater) - Method in class weka.dl4j.NeuralNetConfiguration
 
setUpper(double) - Method in class weka.dl4j.distribution.UniformDistribution
 
setUpperBound(double) - Method in class weka.dl4j.activations.ActivationRReLU
 
setUseAdaGrad(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setUseCustomModel(boolean) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
setUseCustomSetup(boolean) - Method in class weka.dl4j.inference.CustomModelSetup
 
setUseDefaultFeatureLayer(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
 
setUseHierarchicSoftmax(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
 
setUseNormalizedWordVectors(boolean) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
setValidationSetPercentage(double) - Method in class weka.dl4j.earlystopping.EarlyStopping
 
setValue(double) - Method in class weka.dl4j.distribution.ConstantDistribution
 
setValues(Map<Integer, Double>) - Method in class weka.dl4j.schedules.MapSchedule
 
setVariation(Dl4jDarknet19.VARIATION) - Method in class weka.dl4j.zoo.Dl4jDarknet19
 
setVariation(VGG.VARIATION) - Method in class weka.dl4j.zoo.Dl4jVGG
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.DenseNet
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.EfficientNet
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.InceptionResNetV2
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.InceptionV3
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.KerasZooModel
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.MobileNet
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.NASNet
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.ResNet
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.VGG
 
setVariation(Enum) - Method in class weka.dl4j.zoo.keras.Xception
 
setVariation(DenseNet.VARIATION) - Method in class weka.dl4j.zoo.KerasDenseNet
 
setVariation(EfficientNet.VARIATION) - Method in class weka.dl4j.zoo.KerasEfficientNet
 
setVariation(InceptionV3.VARIATION) - Method in class weka.dl4j.zoo.KerasInceptionV3
 
setVariation(NASNet.VARIATION) - Method in class weka.dl4j.zoo.KerasNASNet
 
setVariation(ResNet.VARIATION) - Method in class weka.dl4j.zoo.KerasResNet
 
setVariation(VGG.VARIATION) - Method in class weka.dl4j.zoo.KerasVGG
 
setVariation(Xception.VARIATION) - Method in class weka.dl4j.zoo.KerasXception
 
setWeightInit(WeightInit) - Method in class weka.dl4j.NeuralNetConfiguration
 
setWeightNoise(AbstractWeightNoise) - Method in class weka.dl4j.NeuralNetConfiguration
 
setWeightRetainProbability(double) - Method in class weka.dl4j.weightnoise.DropConnect
 
setWeightRetainProbabilitySchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.weightnoise.DropConnect
 
setWekaDl4jLogLevel(LogConfiguration.LogLevel) - Method in class weka.core.LogConfiguration
Set the WekaDeeplearning4j log level.
setWidth(int) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
 
setWidth(int) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
 
setWidth(int) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
 
setWindowSize(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setWordVectorLocation(File) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
Set the word vector location and try to initialize it
setWordVectors(WordVectors) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
 
setWordVectors(WordVectors) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
 
setWorkers(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
 
setZooModel(AbstractZooModel) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Set the modelzoo zooModel
setZooModel(AbstractZooModel) - Method in class weka.classifiers.functions.RnnSequenceClassifier
Deprecated.
setZooModelType(AbstractZooModel) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
 
setZooModelType(AbstractZooModel) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
Clear the old transformation layers and set the new one if we've changed to a different model type.
Sgd - Class in weka.dl4j.updater
A WEKA version of DeepLearning4j's Sgd.
Sgd() - Constructor for class weka.dl4j.updater.Sgd
 
SigmoidSchedule - Class in weka.dl4j.schedules
Sigmoid schedule for learning rates.
SigmoidSchedule() - Constructor for class weka.dl4j.schedules.SigmoidSchedule
 
splitTrainVal(Instances, double) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
Split the dataset into p% train an (100-p)% test set.
start() - Method in class weka.core.progress.AbstractProgressBar
Initialize all values to 0 and start the progress manager.
start() - Method in class weka.core.progress.ProgressManager
Show the progress bar and start the timer.
StemmingPreProcessor - Class in weka.dl4j.text.tokenization.preprocessor
A wrapper that extends the PreProcessor API for StemmingPreProcessorImpl.
StemmingPreProcessor() - Constructor for class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
 
StemmingPreProcessorImpl - Class in weka.dl4j.text.tokenization.preprocessor.impl
Implements basic cleaning inherited from CommonPreProcessor + does stemming using a Weka Stemmer.
StemmingPreProcessorImpl() - Constructor for class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
 
StepFunction<T extends org.deeplearning4j.nn.conf.stepfunctions.StepFunction> - Class in weka.dl4j.stepfunctions
StepFunction wrapper for Deeplearning4j's StepFunction classes.
StepFunction() - Constructor for class weka.dl4j.stepfunctions.StepFunction
 
StepSchedule - Class in weka.dl4j.schedules
Step schedule for learning rates.
StepSchedule() - Constructor for class weka.dl4j.schedules.StepSchedule
 
stopwords(AbstractStopwords) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator.Builder
Set stopwords.
stopwordsTipText() - Method in class weka.dl4j.text.stopwords.Dl4jWordsFromFile
Returns the tip text for this property.
SubsamplingLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's SubsamplingLayer that implements WEKA option handling.
SubsamplingLayer() - Constructor for class weka.dl4j.layers.SubsamplingLayer
Constructor for setting some defaults.

T

TAGS_FILTER - Static variable in class weka.classifiers.functions.Dl4jMlpClassifier
The filter to apply to the training data.
textProgressBarTest() - Static method in class weka.examples.WekaDeeplearning4jExamples
 
TokenizerFactory<T extends org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory> - Class in weka.dl4j.text.tokenization.tokenizer.factory
TokenizerFactory wrapper for Deeplearning4j's TokenizerFactory classes.
TokenizerFactory() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
 
TokenPreProcess<T extends org.deeplearning4j.text.tokenization.tokenizer.TokenPreProcess> - Class in weka.dl4j.text.tokenization.preprocessor
TokenPreProcess wrapper for Deeplearning4j's TokenPreProcess classes.
TokenPreProcess() - Constructor for class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
 
TopNPredictions - Class in weka.dl4j.inference
Holds an arbitrary number of predictions, ordered by class probability.
TopNPredictions() - Constructor for class weka.dl4j.inference.TopNPredictions
Initialize.
TopNPredictions(String, String) - Constructor for class weka.dl4j.inference.TopNPredictions
Initialize the top N predictions.
toString() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Returns a string describing the model.
toString() - Method in class weka.dl4j.inference.Prediction
 
toString() - Method in class weka.dl4j.inference.PredictionClass
 
toSummaryString() - Method in class weka.dl4j.inference.TopNPredictions
Return a summary string of the stored predictions.
toSummaryString(String, String) - Method in class weka.dl4j.inference.TopNPredictions
Return a summary string of the stored predictions, headed with the given image and model name.
toTableRowString(String) - Method in class weka.dl4j.inference.Prediction
Output a nicely formatted string for this prediction.
totalNumSentences() - Method in class weka.dl4j.iterators.provider.FileLabeledSentenceProvider
 
totalOutcomes() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
Returns the total number of labels.
totalOutcomes() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
 
totalOutcomes() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
 
TrainingListener - Class in weka.dl4j.listener
Iteration listener that can be attached to a Dl4j model.
TrainingListener() - Constructor for class weka.dl4j.listener.TrainingListener
 
transformationLayersToNames() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
Return transformation layer names.
TruncatedNormalDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's TruncatedNormalDistribution that implements WEKA option handling.
TruncatedNormalDistribution() - Constructor for class weka.dl4j.distribution.TruncatedNormalDistribution
 
tryLoadFromFile(File, AbstractZooModel) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
Tries to load from a saved model file (if it exists), otherwise loads the given zoo model
TweetNLPTokenizer - Class in weka.dl4j.text.tokenization.tokenizer
A DeepLearning4j's Tokenizer interface for the CMU TweetNLP tokenizer.
TweetNLPTokenizer(String) - Constructor for class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
initializes the Object
TweetNLPTokenizerFactory - Class in weka.dl4j.text.tokenization.tokenizer.factory
A DeepLearning4j's TokenizerFactory interface for the CMU TweetNLP tokenizer.
TweetNLPTokenizerFactory() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
 
TweetNLPTokenizerFactoryImpl - Class in weka.dl4j.text.tokenization.tokenizer.factory.impl
A DeepLearning4j's TokenizerFactory interface for the CMU TweetNLP tokenizer.
TweetNLPTokenizerFactoryImpl() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
 

U

UniformDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's UniformDistribution that implements WEKA option handling.
UniformDistribution() - Constructor for class weka.dl4j.distribution.UniformDistribution
 
Updater<T extends org.nd4j.linalg.learning.config.IUpdater> - Class in weka.dl4j.updater
Default Updater that implements WEKA option handling.
Updater() - Constructor for class weka.dl4j.updater.Updater
 
useEarlyStopping() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Use early stopping only if valid split percentage
useZooModel() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Check if the user has selected to use a zoomodel
Utils - Class in weka.dl4j
Utility routines for the Dl4jMlpClassifier.
Utils() - Constructor for class weka.dl4j.Utils
 

V

validate(Instances) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
Validates the input dataset
validate(Instances) - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
 
validate(Instances) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
Validates the input dataset.
validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
 
validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
 
validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
 
validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
 
validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
Validates the input dataset
valueAt(int, int) - Method in class weka.dl4j.schedules.ConstantSchedule.ConstantScheduleImpl
 
valueOf(String) - Static method in enum weka.core.LogConfiguration.LogLevel
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.enums.AlgoMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.enums.CacheMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.enums.ConvolutionMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.enums.GradientNormalization
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.enums.PoolingType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.enums.PretrainedType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.inference.ClassmapType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.schedules.ScheduleType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.Dl4jDarknet19.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.DenseNet.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.EfficientNet.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.InceptionResNetV2.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.InceptionV3.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.MobileNet.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.NASNet.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.ResNet.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.VGG.VARIATION
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.dl4j.zoo.keras.Xception.VARIATION
Returns the enum constant of this type with the specified name.
values() - Static method in enum weka.core.LogConfiguration.LogLevel
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.enums.AlgoMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.enums.CacheMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.enums.ConvolutionMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.enums.GradientNormalization
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.enums.PoolingType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.enums.PretrainedType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.inference.ClassmapType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.schedules.ScheduleType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.Dl4jDarknet19.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.DenseNet.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.EfficientNet.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.InceptionResNetV2.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.InceptionV3.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.MobileNet.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.NASNet.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.ResNet.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.VGG.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.dl4j.zoo.keras.Xception.VARIATION
Returns an array containing the constants of this enum type, in the order they are declared.
VGG - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of VGG.
VGG() - Constructor for class weka.dl4j.zoo.keras.VGG
Instantiate the model.
VGG.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.
VoidCallable - Interface in weka.dl4j
Simple callable interafce with no parameters and no return value (void).

W

WeightNoise - Class in weka.dl4j.weightnoise
Weight noise wrapper.
WeightNoise() - Constructor for class weka.dl4j.weightnoise.WeightNoise
 
weka.classifiers.functions - package weka.classifiers.functions
 
weka.core - package weka.core
 
weka.core.converters - package weka.core.converters
 
weka.core.progress - package weka.core.progress
 
weka.dl4j - package weka.dl4j
 
weka.dl4j.activations - package weka.dl4j.activations
 
weka.dl4j.distribution - package weka.dl4j.distribution
 
weka.dl4j.dropout - package weka.dl4j.dropout
 
weka.dl4j.earlystopping - package weka.dl4j.earlystopping
 
weka.dl4j.enums - package weka.dl4j.enums
 
weka.dl4j.inference - package weka.dl4j.inference
 
weka.dl4j.interpretability - package weka.dl4j.interpretability
 
weka.dl4j.interpretability.listeners - package weka.dl4j.interpretability.listeners
 
weka.dl4j.iterators.dataset - package weka.dl4j.iterators.dataset
 
weka.dl4j.iterators.dataset.sequence - package weka.dl4j.iterators.dataset.sequence
 
weka.dl4j.iterators.dataset.sequence.text.cnn - package weka.dl4j.iterators.dataset.sequence.text.cnn
 
weka.dl4j.iterators.dataset.sequence.text.rnn - package weka.dl4j.iterators.dataset.sequence.text.rnn
 
weka.dl4j.iterators.instance - package weka.dl4j.iterators.instance
 
weka.dl4j.iterators.instance.api - package weka.dl4j.iterators.instance.api
 
weka.dl4j.iterators.instance.sequence - package weka.dl4j.iterators.instance.sequence
 
weka.dl4j.iterators.instance.sequence.text - package weka.dl4j.iterators.instance.sequence.text
 
weka.dl4j.iterators.instance.sequence.text.cnn - package weka.dl4j.iterators.instance.sequence.text.cnn
 
weka.dl4j.iterators.instance.sequence.text.rnn - package weka.dl4j.iterators.instance.sequence.text.rnn
 
weka.dl4j.iterators.provider - package weka.dl4j.iterators.provider
 
weka.dl4j.layers - package weka.dl4j.layers
 
weka.dl4j.layers.lambda - package weka.dl4j.layers.lambda
 
weka.dl4j.listener - package weka.dl4j.listener
 
weka.dl4j.lossfunctions - package weka.dl4j.lossfunctions
 
weka.dl4j.schedules - package weka.dl4j.schedules
 
weka.dl4j.scripts.keras_downloading - package weka.dl4j.scripts.keras_downloading
 
weka.dl4j.stepfunctions - package weka.dl4j.stepfunctions
 
weka.dl4j.text.sentenceiterator - package weka.dl4j.text.sentenceiterator
 
weka.dl4j.text.stopwords - package weka.dl4j.text.stopwords
 
weka.dl4j.text.tokenization.preprocessor - package weka.dl4j.text.tokenization.preprocessor
 
weka.dl4j.text.tokenization.preprocessor.impl - package weka.dl4j.text.tokenization.preprocessor.impl
 
weka.dl4j.text.tokenization.tokenizer - package weka.dl4j.text.tokenization.tokenizer
 
weka.dl4j.text.tokenization.tokenizer.factory - package weka.dl4j.text.tokenization.tokenizer.factory
 
weka.dl4j.text.tokenization.tokenizer.factory.impl - package weka.dl4j.text.tokenization.tokenizer.factory.impl
 
weka.dl4j.updater - package weka.dl4j.updater
 
weka.dl4j.weightnoise - package weka.dl4j.weightnoise
 
weka.dl4j.zoo - package weka.dl4j.zoo
 
weka.dl4j.zoo.keras - package weka.dl4j.zoo.keras
 
weka.examples - package weka.examples
 
weka.filters.unsupervised.attribute - package weka.filters.unsupervised.attribute
 
weka.gui.explorer - package weka.gui.explorer
 
WekaDeeplearning4jExamples - Class in weka.examples
 
WekaDeeplearning4jExamples() - Constructor for class weka.examples.WekaDeeplearning4jExamples
 
WekaInstanceSentenceIterator - Class in weka.dl4j.text.sentenceiterator
A Deeplearning4j's sentence iterator for Weka Instances.
WekaInstanceSentenceIterator(Instances, int) - Constructor for class weka.dl4j.text.sentenceiterator.WekaInstanceSentenceIterator
initializes the Object
WekaScoreCAM - Class in weka.dl4j.interpretability
WEKA Wrapper for the Deeplearning4j ScoreCAM implementation.
WekaScoreCAM() - Constructor for class weka.dl4j.interpretability.WekaScoreCAM
 
WekaTokenizer - Class in weka.dl4j.text.tokenization.tokenizer
A DeepLearning4j's Tokenizer interface to Weka Tokenizer.
WekaTokenizer(String, Tokenizer) - Constructor for class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
initializes the Object
Word2VecLoader - Class in weka.core.converters
Loads Word2Vec seriliazed embeddings into Weka.
Word2VecLoader() - Constructor for class weka.core.converters.Word2VecLoader
 
wordVectors - Variable in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
Loaded word vectors
WORKSPACE_MODE - Static variable in class weka.dl4j.Preferences
Global workspace mode
WrongIteratorException - Exception in weka.core
Exception raised in the case of a wrong iterator
WrongIteratorException(String) - Constructor for exception weka.core.WrongIteratorException
 
WrongIteratorException(String, Throwable) - Constructor for exception weka.core.WrongIteratorException
 

X

Xception - Class in weka.dl4j.zoo.keras
Wrapper class for the different versions of Xception.
Xception() - Constructor for class weka.dl4j.zoo.keras.Xception
Instantiate the model.
Xception.VARIATION - Enum in weka.dl4j.zoo.keras
Different variations of the model.

Z

ZeroPaddingLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's ZeroPaddingLayer layer that implements WEKA option handling.
ZeroPaddingLayer() - Constructor for class weka.dl4j.layers.ZeroPaddingLayer
Constructor for setting some defaults.
A B C D E F G H I K L M N O P R S T U V W X Z 
Skip navigation links