- CacheMode - Enum in weka.dl4j.enums
-
Cache modes for datasetiterators.
- call() - Method in interface weka.dl4j.VoidCallable
-
- CenterLossOutputLayer - Class in weka.dl4j.layers
-
A version of DeepLearning4j's CenterLossOutputLayer layer that implements WEKA option handling.
- CenterLossOutputLayer() - Constructor for class weka.dl4j.layers.CenterLossOutputLayer
-
Constructor for setting some defaults.
- CharacterNGramTokenizerFactory - Class in weka.dl4j.text.tokenization.tokenizer.factory
-
A DeepLearning4j's TokenizerFactory interface for Weka core tokenizers.
- CharacterNGramTokenizerFactory() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
- CharacterNGramTokenizerFactoryImpl - Class in weka.dl4j.text.tokenization.tokenizer.factory.impl
-
A DeepLearning4j's TokenizerFactory interface for Weka core tokenizers.
- CharacterNGramTokenizerFactoryImpl() - Constructor for class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- check() - Method in class weka.dl4j.IsGPUAvailable
-
Main Entrypoint: Check whether WekaDeeplearning4j can detect a GPU backend.
- checkArgs() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
Check the arguments for the explorer.
- checkIfRunByGUI() - Method in class weka.core.progress.ProgressManager
-
Checks the stacktrace for a call to anything in the weka.gui package.
- Checksums - Static variable in class weka.dl4j.zoo.keras.KerasConstants
-
Checksums of model files.
- ClassmapType - Enum in weka.dl4j.inference
-
Built-in class maps for WDL4J.
- ClassSelector - Class in weka.gui.explorer
-
Class selector panel.
- ClassSelector(JPanel, String[]) - Constructor for class weka.gui.explorer.ClassSelector
-
Init the ClassSelector panel.
- clearTransformationLayers() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
Clear the transformation layers to be used by the filter.
- clone() - Method in class weka.dl4j.schedules.ConstantSchedule.ConstantScheduleImpl
-
- CnnSentenceDataSetIterator - Class in weka.dl4j.iterators.dataset.sequence.text.cnn
-
CnnSentenceDataSetIterator extension to Deeplearning4j implementation.
- CnnSentenceDataSetIterator.Builder - Class in weka.dl4j.iterators.dataset.sequence.text.cnn
-
CnnSentenceDataSetIterator.Builder implementation that supports stopwords.
- CnnTextEmbeddingInstanceIterator - Class in weka.dl4j.iterators.instance.sequence.text.cnn
-
Iterator that constructs datasets from text data for convolutional networks.
- CnnTextEmbeddingInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
-
- CnnTextFilesEmbeddingInstanceIterator - Class in weka.dl4j.iterators.instance.sequence.text.cnn
-
Iterator that constructs datasets from text data given as a set of files.
- CnnTextFilesEmbeddingInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
- CollectionLabeledSentenceProvider - Class in weka.dl4j.iterators.provider
-
Extend CollectionLabeledSentenceProvider from DL4J to support setting numClasses dynamically for
regression tasks.
- CollectionLabeledSentenceProvider(List<String>, List<String>, int) - Constructor for class weka.dl4j.iterators.provider.CollectionLabeledSentenceProvider
-
- CommandLineProgressBar - Class in weka.core.progress
-
Command line implementation of a progress bar.
- CommandLineProgressBar(double, String) - Constructor for class weka.core.progress.CommandLineProgressBar
-
Instantiate a new progress bar.
- commandLineProgressTest() - Static method in class weka.examples.WekaDeeplearning4jExamples
-
- CommonPreProcessor - Class in weka.dl4j.text.tokenization.preprocessor
-
- CommonPreProcessor() - Constructor for class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
-
- CommonPreProcessorImpl - Class in weka.dl4j.text.tokenization.preprocessor.impl
-
A serializable version of DeepLearning4j's CommonPreProcessor.
- CommonPreProcessorImpl() - Constructor for class weka.dl4j.text.tokenization.preprocessor.impl.CommonPreProcessorImpl
-
- computeScore(ComputationGraph, DataSetIterator) - Static method in class weka.dl4j.Utils
-
Compute the model score on a given iterator.
- ConstantDistribution - Class in weka.dl4j.distribution
-
A version of DeepLearning4j's ConstantDistribution that implements WEKA option handling.
- ConstantDistribution() - Constructor for class weka.dl4j.distribution.ConstantDistribution
-
- ConstantSchedule - Class in weka.dl4j.schedules
-
Constant schedule for learning rates.
- ConstantSchedule() - Constructor for class weka.dl4j.schedules.ConstantSchedule
-
- ConstantSchedule.ConstantScheduleImpl - Class in weka.dl4j.schedules
-
- ConstantScheduleImpl() - Constructor for class weka.dl4j.schedules.ConstantSchedule.ConstantScheduleImpl
-
- ConstantScheduleImpl(double) - Constructor for class weka.dl4j.schedules.ConstantSchedule.ConstantScheduleImpl
-
- convertToInstances(INDArray, Instances, Map<String, Long>) - Static method in class weka.dl4j.Utils
-
Converts the newly transformed instances to an Instances object.
- ConvolutionalIterator - Interface in weka.dl4j.iterators.instance.api
-
Interface for objects for which convolution can be applied.
- ConvolutionInstanceIterator - Class in weka.dl4j.iterators.instance
-
Converts the given Instances object into a DataSet and then constructs and returns a
DefaultDataSetIterator.
- ConvolutionInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
- ConvolutionLayer - Class in weka.dl4j.layers
-
A version of DeepLearning4j's ConvolutionLayer that implements WEKA option handling.
- ConvolutionLayer() - Constructor for class weka.dl4j.layers.ConvolutionLayer
-
Constructor for setting some defaults.
- ConvolutionMode - Enum in weka.dl4j.enums
-
Proxy Enum for ConvolutionMode
.
- copyNominalAttribute(Attribute) - Static method in class weka.dl4j.Utils
-
Copies the attribute name and values of a given nominal attribute.
- countTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
-
- countTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
-
- create(IActivation) - Static method in class weka.dl4j.activations.Activation
-
Create an API wrapped schedule from a given ISchedule object.
- create(Distribution) - Static method in class weka.dl4j.distribution.Distribution
-
Create an API wrapped layer from a given layer object.
- create(IDropout) - Static method in class weka.dl4j.dropout.AbstractDropout
-
Create an API wrapped layer from a given layer object.
- create(Layer) - Static method in class weka.dl4j.layers.Layer
-
Create an API wrapped layer from a given layer object.
- create(ILossFunction) - Static method in class weka.dl4j.lossfunctions.LossFunction
-
Create an API wrapped schedule from a given ILossFunction object.
- create(ISchedule) - Static method in class weka.dl4j.schedules.Schedule
-
Create an API wrapped schedule from a given ISchedule object.
- create(StepFunction) - Static method in class weka.dl4j.stepfunctions.StepFunction
-
Create an API wrapped schedule from a given ISchedule object.
- create(TokenPreProcess) - Static method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
-
Create an API wrapped schedule from a given ISchedule object.
- create(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- create(InputStream) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- create(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- create(InputStream) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- create(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
-
- create(InputStream) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
-
- create(TokenizerFactory) - Static method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
-
Create an API wrapped schedule from a given ISchedule object.
- create(IUpdater) - Static method in class weka.dl4j.updater.Updater
-
Create an API wrapped updater from a given updater object.
- create(IWeightNoise) - Static method in class weka.dl4j.weightnoise.AbstractWeightNoise
-
Create an API wrapped updater from a given updater object.
- createDataset() - Method in class weka.core.converters.ImageDirectoryLoader
-
Main entrypoint.
- createGradient(Color, Color, int) - Static method in class weka.dl4j.interpretability.Gradient
-
Creates an array of Color objects for use as a gradient, using a linear
interpolation between the two specified colors.
- createMultiGradient(Color[], int) - Static method in class weka.dl4j.interpretability.Gradient
-
Creates an array of Color objects for use as a gradient, using an array of Color objects.
- Cropping2D - Class in weka.dl4j.layers
-
A version of DeepLearning4j's DenseLayer that implements WEKA option handling.
- Cropping2D() - Constructor for class weka.dl4j.layers.Cropping2D
-
Constructor for setting some defaults.
- CustomBroadcast - Class in weka.dl4j.layers.lambda
-
Required for loading the EfficientNet family of models.
- CustomBroadcast() - Constructor for class weka.dl4j.layers.lambda.CustomBroadcast
-
Instantiate the layer.
- CustomBroadcast(long) - Constructor for class weka.dl4j.layers.lambda.CustomBroadcast
-
Instantiate the layer with the supplied width.
- CustomModelSetup - Class in weka.dl4j.inference
-
Config class to hold parameters for a custom model that was trained previously.
- CustomModelSetup() - Constructor for class weka.dl4j.inference.CustomModelSetup
-
- CustomNet - Class in weka.dl4j.zoo
-
A dummy ZooModel which is empty.
- CustomNet() - Constructor for class weka.dl4j.zoo.CustomNet
-
- GaussianDropout - Class in weka.dl4j.dropout
-
Gaussian dropout implementation.
- GaussianDropout() - Constructor for class weka.dl4j.dropout.GaussianDropout
-
- GaussianNoise - Class in weka.dl4j.dropout
-
Gaussian noise implementation.
- GaussianNoise() - Constructor for class weka.dl4j.dropout.GaussianNoise
-
- generateAndSaveOutputMap() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
Generate the output heatmap, and save to file.
- generateHeatmapToImage(int[], String[], boolean) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
Generates heatmaps for the supplied classes, returning a human-viewable heatmap summary.
- generateHeatmapToImage() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
Generates heatmaps, returning a human-viewable heatmap summary.
- generateHeatmapToImage(int[], String[], boolean) - Method in class weka.dl4j.interpretability.ScoreCAM
-
- generateHeatmapToImage() - Method in class weka.dl4j.interpretability.WekaScoreCAM
-
- generateOutputMap() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
Generate and return the heatmap.
- getAction() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getActivationFunction() - Method in class weka.dl4j.layers.ActivationLayer
-
- getActivationFunction() - Method in class weka.dl4j.layers.FeedForwardLayer
-
- getActivationsAtLayers(String[], Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Overridden method - if no pooling type is given then set it to NONE
Uses the given set of layers to extract features for the given dataset
- getActivationsAtLayers(String[], Instances, PoolingType) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Uses the given set of layers to extract features for the given dataset
- getAlpha() - Method in class weka.dl4j.activations.ActivationELU
-
- getAlpha() - Method in class weka.dl4j.activations.ActivationLReLU
-
- getAlpha() - Method in class weka.dl4j.dropout.AlphaDropout
-
- getAlpha() - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- getApplicationName() - Method in class weka.dl4j.IsGPUAvailable
-
- getAttributeName(Map<String, Long>, int) - Static method in class weka.dl4j.Utils
-
Helper function for getting the new layer name when using the Dl4jMlpFilter
The attributes are named after the layer they originated from, so this function
counts throught the attributes per layer, comparing it with the given index
to determine a) which layer the activation came from and b) which number activation
this is.
- getBackend() - Method in class weka.dl4j.activations.Activation
-
- getBackend() - Method in class weka.dl4j.activations.ActivationELU
-
- getBackend() - Method in class weka.dl4j.activations.ActivationLReLU
-
- getBackend() - Method in interface weka.dl4j.ApiWrapper
-
Access the DL4J backend.
- getBackend() - Method in class weka.dl4j.distribution.BinomialDistribution
-
- getBackend() - Method in class weka.dl4j.distribution.Distribution
-
- getBackend() - Method in class weka.dl4j.dropout.AbstractDropout
-
- getBackend() - Method in class weka.dl4j.dropout.AlphaDropout
-
- getBackend() - Method in class weka.dl4j.dropout.GaussianDropout
-
- getBackend() - Method in class weka.dl4j.dropout.GaussianNoise
-
- getBackend() - Method in enum weka.dl4j.enums.AlgoMode
-
- getBackend() - Method in enum weka.dl4j.enums.ConvolutionMode
-
- getBackend() - Method in enum weka.dl4j.enums.GradientNormalization
-
- getBackend() - Method in enum weka.dl4j.enums.PoolingType
-
- getBackend() - Method in enum weka.dl4j.enums.PretrainedType
-
- getBackend() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
-
- getBackend() - Method in class weka.dl4j.layers.Layer
-
- getBackend() - Method in class weka.dl4j.lossfunctions.LossFunction
-
- getBackend() - Method in class weka.dl4j.schedules.ConstantSchedule
-
- getBackend() - Method in class weka.dl4j.schedules.InverseSchedule
-
- getBackend() - Method in class weka.dl4j.schedules.Schedule
-
- getBackend() - Method in enum weka.dl4j.schedules.ScheduleType
-
- getBackend() - Method in class weka.dl4j.stepfunctions.StepFunction
-
- getBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
-
- getBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
-
- getBackend() - Method in class weka.dl4j.updater.Adam
-
- getBackend() - Method in class weka.dl4j.updater.Updater
-
- getBackend() - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
-
- getBatchSize() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- getBatchSize() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- getBatchSize() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- getBeta() - Method in class weka.dl4j.layers.BatchNormalization
-
- getBeta1() - Method in class weka.dl4j.updater.Adam
-
- getBeta1() - Method in class weka.dl4j.updater.AdaMax
-
- getBeta1() - Method in class weka.dl4j.updater.Nadam
-
- getBeta2() - Method in class weka.dl4j.updater.Adam
-
- getBeta2() - Method in class weka.dl4j.updater.AdaMax
-
- getBeta2() - Method in class weka.dl4j.updater.Nadam
-
- getBiasInit() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getBiasUpdater() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getBuiltInClassMap() - Method in class weka.dl4j.inference.ModelOutputDecoder
-
- getCacheMode() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getCapabilities() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Returns default capabilities of the classifier.
- getCapabilities() - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
Returns default capabilities of the classifier.
- getCapabilities() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
Returns default capabilities of the classifier.
- getCapabilities() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getChannelsLast() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- getChannelsLast() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- getClasses() - Method in class weka.dl4j.inference.ModelOutputDecoder
-
Parses the classmap file into a String[]
- getClassID() - Method in class weka.dl4j.inference.Prediction
-
- getClassID() - Method in class weka.dl4j.inference.PredictionClass
-
- getClassMap() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- getClassMapFile() - Method in class weka.dl4j.inference.ModelOutputDecoder
-
- getClassName() - Method in class weka.dl4j.inference.Prediction
-
- getClassName() - Method in class weka.dl4j.inference.PredictionClass
-
- getClassProbability() - Method in class weka.dl4j.inference.Prediction
-
- getComputationGraph() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- getConcat_words() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getConcatWords() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getConvolutionMode() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getConvolutionMode() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
- getConvolutionMode() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getCudnnAlgoMode() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getCudnnAlgoMode() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
- getCurrentClassMap() - Method in class weka.gui.explorer.SaliencyMapWindow
-
- getCurrentPredictions() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- getCursor() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getCustomModelSetup() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- getCustomModelSetup() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- getDataSet() - Method in class weka.core.converters.ImageDirectoryLoader
-
- getDataSet() - Method in class weka.core.converters.Word2VecLoader
-
- getDataSetIterator(Instances, int) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Returns the actual iterator.
- getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Returns the actual iterator.
- getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
Returns the actual iterator.
- getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
-
Returns the actual iterator.
- getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
This method returns the iterator.
- getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
- getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
-
- getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
-
Returns the actual iterator.
- getDataSetIterator(Instances, int, int) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
- getDataSetPreProcessor() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getDecay() - Method in class weka.dl4j.layers.BatchNormalization
-
- getDecayRate() - Method in class weka.dl4j.schedules.StepSchedule
-
- getDefaultClassID() - Method in class weka.gui.explorer.SaliencyMapWindow
-
- getDefaultGraph() - Method in class weka.dl4j.zoo.AbstractZooModel
-
Convenience method to returns a default pretrained graph for this zoo model
- getDelimiters() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- getDelimiters() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
- getDist() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getDistribution() - Method in class weka.dl4j.weightnoise.WeightNoise
-
- getDl4jLogLevel() - Method in class weka.core.LogConfiguration
-
Get the Dl4j log level.
- getDl4jMlpClassifier() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- getDoNotClearFilesystemCache() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getDropout() - Method in class weka.dl4j.layers.DropoutLayer
-
- getDropout() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getEarlyStopping() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getEmbedding_prefix() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getEpochs() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getEps() - Method in class weka.dl4j.layers.BatchNormalization
-
- getEps() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getEpsilon() - Method in class weka.dl4j.updater.AdaDelta
-
- getEpsilon() - Method in class weka.dl4j.updater.AdaGrad
-
- getEpsilon() - Method in class weka.dl4j.updater.Adam
-
- getEpsilon() - Method in class weka.dl4j.updater.AdaMax
-
- getEpsilon() - Method in class weka.dl4j.updater.Nadam
-
- getEpsilon() - Method in class weka.dl4j.updater.RmsProp
-
- getETAString() - Method in class weka.core.progress.AbstractProgressBar
-
Gets the estimated time remaining of the task, or "" if indeterminate
- getExplorer() - Method in class weka.gui.explorer.ExplorerDl4jInference
-
returns the parent Explorer frame
- getExtraLayersToRemove() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- getFeatureExtractionLayer() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- getFieldValue(Object, String) - Static method in class weka.dl4j.Utils
-
Access private field of a given object.
- getFileDescription() - Method in class weka.core.converters.Word2VecLoader
-
- getFileExtension() - Method in class weka.core.converters.Word2VecLoader
-
- getFileExtensions() - Method in class weka.core.converters.Word2VecLoader
-
- getFilterType() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getGain() - Method in class weka.dl4j.distribution.OrthogonalDistribution
-
- getGamma() - Method in class weka.dl4j.layers.BatchNormalization
-
- getGamma() - Method in class weka.dl4j.schedules.ExponentialSchedule
-
- getGamma() - Method in class weka.dl4j.schedules.InverseSchedule
-
- getGamma() - Method in class weka.dl4j.schedules.SigmoidSchedule
-
- getGateActivationFn() - Method in class weka.dl4j.layers.GravesLSTM
-
Deprecated.
- getGateActivationFn() - Method in class weka.dl4j.layers.LSTM
-
- getGenerateSaliencyMap() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- getGradientCheck() - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- getGradientNormalization() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getGradientNormalizationThreshold() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getHeight() - Method in interface weka.dl4j.iterators.instance.api.ConvolutionalIterator
-
- getHeight() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
- getHeight() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- getHeight() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- getImageInstanceIterator() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- getImagePreProcessingScaler() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.AbstractZooModel
-
Get the preprocessor to process this model's data with
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.CustomNet
-
By default, training a model uses the below scaler for the Dl4jMlpClassifier.
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jAlexNet
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jDarknet19
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jInceptionResNetV1
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jLeNet
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jResNet50
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jSqueezeNet
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jVGG
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.Dl4jXception
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasDenseNet
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasEfficientNet
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasInceptionV3
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasNASNet
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasResNet
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasVGG
-
- getImagePreprocessingScaler() - Method in class weka.dl4j.zoo.KerasXception
-
- getImagesLocation() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- getImagesLocation() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- getImplementingWrapper(Class<T>, V, String) - Static method in class weka.dl4j.ApiWrapperUtil
-
Return the implementing wrapper class of a given backend object.
- getInitialValue() - Method in class weka.dl4j.schedules.ConstantSchedule
-
- getInitialValue() - Method in class weka.dl4j.schedules.MapSchedule
-
Deprecated.
- getInitialValue() - Method in class weka.dl4j.schedules.Schedule
-
- getInputChannels() - Method in class weka.dl4j.inference.CustomModelSetup
-
- getInputDirectory() - Method in class weka.core.converters.ImageDirectoryLoader
-
- getInputFilename() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- getInputHeight() - Method in class weka.dl4j.inference.CustomModelSetup
-
- getInputShape(CustomModelSetup) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getInputShape() - Method in class weka.dl4j.zoo.AbstractZooModel
-
Get the input shape of this zoomodel
- getInputShape() - Method in class weka.dl4j.zoo.CustomNet
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jAlexNet
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jDarknet19
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jInceptionResNetV1
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jLeNet
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jResNet50
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jSqueezeNet
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jVGG
-
- getInputShape() - Method in class weka.dl4j.zoo.Dl4jXception
-
- getInputShape() - Method in class weka.dl4j.zoo.KerasDenseNet
-
- getInputShape() - Method in class weka.dl4j.zoo.KerasEfficientNet
-
- getInputShape() - Method in class weka.dl4j.zoo.KerasInceptionV3
-
- getInputShape() - Method in class weka.dl4j.zoo.KerasNASNet
-
- getInputShape() - Method in class weka.dl4j.zoo.KerasResNet
-
- getInputShape() - Method in class weka.dl4j.zoo.KerasVGG
-
- getInputShape() - Method in class weka.dl4j.zoo.KerasXception
-
- getInputWidth() - Method in class weka.dl4j.inference.CustomModelSetup
-
- getInstanceIterator() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getInstanceIterator() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- getIsMinibatch() - Method in class weka.dl4j.layers.BatchNormalization
-
- getIterationListener() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getIterations() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getKernelSize() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getKernelSize() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getKernelSizeX() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getKernelSizeX() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getKernelSizeY() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getKernelSizeY() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getL1() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getL2() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getLabelForPath(String) - Method in class weka.dl4j.ArffMetaDataLabelGenerator
-
Select the label based on the path in the metadata
- getLabelForPath(URI) - Method in class weka.dl4j.ArffMetaDataLabelGenerator
-
- getLabels() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
-
Gets the labels.
- getLabels() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
-
- getLabels() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
-
- getLambda() - Method in class weka.dl4j.dropout.AlphaDropout
-
- getLambda() - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- getLayerName() - Method in class weka.dl4j.layers.Layer
-
- getLayers() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getLayerSize() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getLearningRate() - Method in class weka.dl4j.updater.AdaDelta
-
- getLearningRate() - Method in class weka.dl4j.updater.Updater
-
Get the learning rate
- getLearningRate() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- getLearningRateSchedule() - Method in class weka.dl4j.updater.Updater
-
Get the learning rate schedule
- getLevel() - Method in enum weka.core.LogConfiguration.LogLevel
-
Get the internal log level.
- getLoadLayerSpecification() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getLockGammaAndBeta() - Method in class weka.dl4j.layers.BatchNormalization
-
- getLogConfig() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Get the log configuration.
- getLogFile() - Method in class weka.core.LogConfiguration
-
Get the log file
- getLossFn() - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- getLossFn() - Method in class weka.dl4j.layers.LossLayer
-
- getLossFn() - Method in class weka.dl4j.layers.OutputLayer
-
- getLossFn() - Method in class weka.dl4j.layers.RnnOutputLayer
-
- getLower() - Method in class weka.dl4j.distribution.UniformDistribution
-
- getLowerBound() - Method in class weka.dl4j.activations.ActivationRReLU
-
- getMatchingClasses(String) - Method in class weka.gui.explorer.ClassSelector
-
Get the list of classes in our classmap that matches the supplied pattern.
- getMaxEpochsNoImprovement() - Method in class weka.dl4j.earlystopping.EarlyStopping
-
- getMaxIter() - Method in class weka.dl4j.schedules.PolySchedule
-
- getMaxProgress() - Method in class weka.core.progress.AbstractProgressBar
-
Get the max progress value
- getMaxSentenceLength() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getMean() - Method in class weka.dl4j.distribution.LogNormalDistribution
-
- getMean() - Method in class weka.dl4j.distribution.NormalDistribution
-
- getMean() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
-
- getMenuBar() - Method in class weka.dl4j.IsGPUAvailable
-
- getMenuEntryText() - Method in class weka.dl4j.IsGPUAvailable
-
- getMenuToDisplayIn() - Method in class weka.dl4j.IsGPUAvailable
-
- getMinLearningRate() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- getMinWordFrequency() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getModel() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Get the ComputationGraph
model
- getModelInputShape() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- getModelInputShape() - Method in class weka.dl4j.interpretability.ScoreCAM
-
- getModelName() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Get the name of the loaded model
- getModelName() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
Get the name of the loaded model
- getModelName() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- getModelOutputDecoder() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- getMomentum() - Method in class weka.dl4j.updater.Nesterovs
-
- getN() - Method in class weka.dl4j.inference.TopNPredictions
-
- getN() - Method in class weka.dl4j.listener.EpochListener
-
- getNd4jLogLevel() - Method in class weka.core.LogConfiguration
-
Get the Nd4j log level.
- getNegative() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- getNeuralNetConfiguration() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getNext(DataSetIterator) - Static method in class weka.dl4j.Utils
-
Fix for issue with JVM crashing
https://github.com/eclipse/deeplearning4j/issues/8976#issuecomment-639946904
It is recommended to use this helper function in WekaDeeplearning4j rather than using iter.next() directly.
- getNext(DataSetIterator, int) - Static method in class weka.dl4j.Utils
-
Fix for issue with JVM crashing
https://github.com/eclipse/deeplearning4j/issues/8976#issuecomment-639946904
It is recommended to use this helper function in WekaDeeplearning4j rather than using iter.next() directly.
- getNextInstance(Instances) - Method in class weka.core.converters.ImageDirectoryLoader
-
- getNextInstance(Instances) - Method in class weka.core.converters.Word2VecLoader
-
- getNextWekaString() - Method in class weka.dl4j.text.sentenceiterator.WekaInstanceSentenceIterator
-
Gets the next String from a Weka Instance
- getNMax() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
- getNMax() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- getNMax() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- getNMax() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
- getNMin() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
- getNMin() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- getNMin() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- getNMin() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
- getNormalizeHeatmap() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- getNOut() - Method in class weka.dl4j.layers.BatchNormalization
-
Deprecated.
- getNOut() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getNOut() - Method in class weka.dl4j.layers.FeedForwardLayer
-
- getNumberOfTrials() - Method in class weka.dl4j.distribution.BinomialDistribution
-
- getNumChannels() - Method in interface weka.dl4j.iterators.instance.api.ConvolutionalIterator
-
- getNumChannels() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
- getNumChannels() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- getNumChannels() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- getNumClasses() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getNumEpochs() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getNumFExtractOutputs() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- getNumGPUs() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getOptimizationAlgo() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getOptions() - Method in class weka.core.converters.ImageDirectoryLoader
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.core.LogConfiguration
-
Gets the current settings of the log configuration
- getOptions() - Method in class weka.dl4j.activations.Activation
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationCube
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationELU
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationHardSigmoid
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationHardTanH
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationIdentity
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationLReLU
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationRationalTanh
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationReLU
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationRReLU
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSigmoid
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSoftmax
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSoftPlus
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSoftSign
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSwish
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationTanH
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.BinomialDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.ConstantDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.Distribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.LogNormalDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.NormalDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.OrthogonalDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.UniformDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.dropout.AbstractDropout
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.dropout.AlphaDropout
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.dropout.Dropout
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.dropout.GaussianDropout
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.dropout.GaussianNoise
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.earlystopping.EarlyStopping
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.inference.CustomModelSetup
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.inference.ModelOutputDecoder
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.IsGPUAvailable
-
Gets the current option settings for the OptionHandler.
- getOptions() - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.ActivationLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.BatchNormalization
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.ConvolutionLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.Cropping2D
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.DenseLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.DropoutLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.FeedForwardLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.GravesLSTM
-
Deprecated.
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.Layer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.LocalResponseNormalization
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.LossLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.LSTM
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.NoParamLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.OutputLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.RnnOutputLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.SameDiffLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.SubsamplingLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.listener.TrainingListener
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossFMeasure
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossHinge
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossKLD
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossL1
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossL2
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMAE
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMAPE
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMCXENT
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMixtureDensity
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMSE
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMSLE
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMultiLabel
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossPoisson
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.NeuralNetConfiguration
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.schedules.ConstantSchedule
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.schedules.ExponentialSchedule
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.schedules.InverseSchedule
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.schedules.MapSchedule
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.schedules.PolySchedule
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.schedules.Schedule
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.schedules.SigmoidSchedule
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.schedules.StepSchedule
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.StepFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.AdaDelta
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.AdaGrad
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.Adam
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.AdaMax
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.Nadam
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.Nesterovs
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.RmsProp
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.Sgd
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.updater.Updater
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.weightnoise.DropConnect
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.weightnoise.WeightNoise
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.zoo.AbstractZooModel
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- getOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getOutputFile() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- getOutputFileName() - Method in class weka.core.converters.ImageDirectoryLoader
-
- getOutputlayer() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- getOutputType(int, InputType) - Method in class weka.dl4j.layers.lambda.CustomBroadcast
-
- getP() - Method in class weka.dl4j.dropout.AlphaDropout
-
- getP() - Method in class weka.dl4j.dropout.Dropout
-
Get the learning rate schedule
- getPadding() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getPadding() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPadding() - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
- getPaddingColumns() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getPaddingColumns() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPaddingColumns() - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
- getPaddingRows() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getPaddingRows() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPaddingRows() - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
- getParameterAveragingFrequency() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getPathURIs() - Method in class weka.dl4j.ArffMetaDataLabelGenerator
-
Get all paths as uris
- getPnorm() - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- getPnorm() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPoolingDimensions() - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- getPoolingType() - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- getPoolingType() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPoolingType() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- getPower() - Method in class weka.dl4j.schedules.InverseSchedule
-
- getPower() - Method in class weka.dl4j.schedules.PolySchedule
-
- getPrediction(int) - Method in class weka.dl4j.inference.TopNPredictions
-
Get the prediction at index i.
- getPredictionClass() - Method in class weka.dl4j.inference.Prediction
-
- getPrefetchBufferSize() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getPreProcessor() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
-
Gets the preprocessor.
- getPreProcessor() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
-
- getPreProcessor() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
-
- getPreProcessor() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getPretrainedType() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- getPrettyName() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- getProbabilityOfSuccess() - Method in class weka.dl4j.distribution.BinomialDistribution
-
- getProgressManager() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- getProgressMessage() - Method in class weka.core.progress.AbstractProgressBar
-
Return the user supplied progress message
- getpSchedule() - Method in class weka.dl4j.dropout.AlphaDropout
-
- getpSchedule() - Method in class weka.dl4j.dropout.Dropout
-
- getQueueSize() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getRateSchedule() - Method in class weka.dl4j.dropout.GaussianDropout
-
- getRateSchedule() - Method in class weka.dl4j.dropout.GaussianNoise
-
- getRelationalAttributeIndex() - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
- GetResolvedPath(String) - Method in class weka.dl4j.ResourceResolver
-
- getResume() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Returns true if the model is to be finalized (or has been finalized) after training.
- getRevision() - Method in class weka.core.converters.ImageDirectoryLoader
-
- getRevision() - Method in class weka.core.converters.Word2VecLoader
-
- getRho() - Method in class weka.dl4j.updater.AdaDelta
-
- getRmsDecay() - Method in class weka.dl4j.updater.RmsProp
-
- getSaliencyMapWrapper() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- getSampling() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- getScheduleType() - Method in class weka.dl4j.schedules.Schedule
-
- getSeed() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getSeed() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getSentenceProvider() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getSentenceProvider(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
Create a sentence provider from the given data.
- getSentenceProvider(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
- getSentenceProvider(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
- getSerializedModelFile() - Method in class weka.dl4j.inference.CustomModelSetup
-
- getSerializedModelFile() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
GET/SET METHODS
- getStd() - Method in class weka.dl4j.distribution.LogNormalDistribution
-
- getStd() - Method in class weka.dl4j.distribution.NormalDistribution
-
- getStd() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
-
- getStdDev() - Method in class weka.dl4j.dropout.GaussianNoise
-
- getStemmer() - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
-
- getStemmer() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
-
- getStep() - Method in class weka.dl4j.schedules.StepSchedule
-
- getStepSize() - Method in class weka.dl4j.schedules.SigmoidSchedule
-
- getStopList() - Method in class weka.dl4j.text.stopwords.Dl4jAbstractStopwords
-
Returns the list of stopwords.
- getStopList() - Method in class weka.dl4j.text.stopwords.Dl4jNull
-
- getStopList() - Method in class weka.dl4j.text.stopwords.Dl4jRainbow
-
- getStopList() - Method in class weka.dl4j.text.stopwords.Dl4jWordsFromFile
-
- getStopwords() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getStopwords() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- getStopWordsHandler() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getStride() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getStride() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getStrideColumns() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getStrideColumns() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getStrideRows() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getStrideRows() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getStructure() - Method in class weka.core.converters.ImageDirectoryLoader
-
- getStructure() - Method in class weka.core.converters.Word2VecLoader
-
- getTabTitle() - Method in class weka.gui.explorer.ExplorerDl4jInference
-
Returns the title for the tab in the Explorer
- getTabTitleToolTip() - Method in class weka.gui.explorer.ExplorerDl4jInference
-
Returns the tooltip for the tab in the Explorer
- getTargetClass() - Method in class weka.gui.explorer.ClassSelector
-
- getTargetClassIDs() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- getTargetClassIDsAsInt() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- gettBPTTbackwardLength() - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
- gettBPTTforwardLength() - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
- getTechnicalInformation() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
Returns an instance of a TechnicalInformation object, containing detailed information about the
technical background of this class, e.g., paper reference or book this class is based on.
- getTextIndex() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getTextsLocation() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
- getTextsLocation() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
- getTokenizerFactory() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- getTokenizerFactory() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getTokenPreProcess() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- getTokenPreProcessor() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- getTokenPreProcessor() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- getTokenPreProcessor() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
-
- getTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
-
- getTokens() - Method in class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
-
- getTopPrediction() - Method in class weka.dl4j.inference.TopNPredictions
-
- getTopPredictions() - Method in class weka.dl4j.inference.TopNPredictions
-
- getTrainBatchSize() - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Getting the training batch size
- getTrainBatchSize() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- getTransformationLayer(int) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- getTransformationLayers() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- getTruncateLength() - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
- getTruncateLength() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- getUnknown() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getUnknownWordHandling() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getUnknownWordSentinel() - Static method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getUpdater() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getUpper() - Method in class weka.dl4j.distribution.UniformDistribution
-
- getUpperBound() - Method in class weka.dl4j.activations.ActivationRReLU
-
- getUseCustomModel() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- getUseDefaultFeatureLayer() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- getUseNormalizedWordVectors() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getValDataSetIterator() - Method in class weka.dl4j.earlystopping.EarlyStopping
-
Get the validation dataset iterator
- getValidationSetPercentage() - Method in class weka.dl4j.earlystopping.EarlyStopping
-
- getValue() - Method in class weka.dl4j.distribution.ConstantDistribution
-
- getValues() - Method in class weka.dl4j.schedules.MapSchedule
-
- getVariation() - Method in class weka.dl4j.zoo.AbstractZooModel
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.CustomNet
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.Dl4jAlexNet
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.Dl4jDarknet19
-
- getVariation() - Method in class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.Dl4jInceptionResNetV1
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.Dl4jLeNet
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.Dl4jResNet50
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.Dl4jSqueezeNet
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.Dl4jVGG
-
- getVariation() - Method in class weka.dl4j.zoo.Dl4jXception
-
Get the current variation of the zoo model (e.g., Resnet50 or Resnet101)
- getVariation() - Method in class weka.dl4j.zoo.KerasDenseNet
-
- getVariation() - Method in class weka.dl4j.zoo.KerasEfficientNet
-
- getVariation() - Method in class weka.dl4j.zoo.KerasInceptionV3
-
- getVariation() - Method in class weka.dl4j.zoo.KerasNASNet
-
- getVariation() - Method in class weka.dl4j.zoo.KerasResNet
-
- getVariation() - Method in class weka.dl4j.zoo.KerasVGG
-
- getVariation() - Method in class weka.dl4j.zoo.KerasXception
-
- getWeightInit() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getWeightNoise() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getWeightRetainProbability() - Method in class weka.dl4j.weightnoise.DropConnect
-
Get the learning rate schedule
- getWeightRetainProbabilitySchedule() - Method in class weka.dl4j.weightnoise.DropConnect
-
Get the learning rate schedule
- getWekaDl4jLogLevel() - Method in class weka.core.LogConfiguration
-
Get the WekaDeeplearning4j log level.
- getWidth() - Method in interface weka.dl4j.iterators.instance.api.ConvolutionalIterator
-
- getWidth() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
- getWidth() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- getWidth() - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- getWindowSize() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getWordVectorLocation() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- getWordVectors() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getWordVectors() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- getWordVectorSize() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- getWorkers() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- getZooModel() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Get the modelzoo model
- getZooModel() - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
Deprecated.
- getZooModelType() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- getZooModelType() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- globalInfo() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
.
- globalInfo() - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
- globalInfo() - Method in class weka.dl4j.earlystopping.EarlyStopping
-
Returns a string describing this search method
- globalInfo() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
- globalInfo() - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
-
- globalInfo() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
Return the global info for this class.
- globalInfo() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
- globalInfo() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
-
- globalInfo() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
- globalInfo() - Method in class weka.dl4j.layers.ActivationLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.BatchNormalization
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.ConvolutionLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.Cropping2D
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.DenseLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.DropoutLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.GravesLSTM
-
Deprecated.
Global info.
- globalInfo() - Method in class weka.dl4j.layers.LocalResponseNormalization
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.LossLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.LSTM
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.OutputLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.RnnOutputLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.SubsamplingLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.listener.EpochListener
-
Returns a string describing this search method
- globalInfo() - Method in class weka.dl4j.NeuralNetConfiguration
-
Returns a string describing this search method
- globalInfo() - Method in class weka.dl4j.text.stopwords.Dl4jNull
-
Returns a string describing the stopwords scheme.
- globalInfo() - Method in class weka.dl4j.text.stopwords.Dl4jRainbow
-
Returns a string describing the stopwords scheme.
- globalInfo() - Method in class weka.dl4j.text.stopwords.Dl4jWordsFromFile
-
Returns a string describing the stopwords scheme.
- globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
Returns a string describing this object.
- globalInfo() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
-
Returns a string describing this object.
- globalInfo() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- globalInfo() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
Returns a string describing this filter.
- GlobalPoolingLayer - Class in weka.dl4j.layers
-
A version of DeepLearning4j's GlobalPooling that implements WEKA option handling.
- GlobalPoolingLayer() - Constructor for class weka.dl4j.layers.GlobalPoolingLayer
-
Constructor for setting some defaults.
- Gradient - Class in weka.dl4j.interpretability
-
There are a number of defined gradient types (look at the static fields),
but you can create any gradient you like by using either of the following functions:
public static Color[] createMultiGradient(Color[] colors, int numSteps)
public static Color[] createGradient(Color one, Color two, int numSteps)
You can then assign an arbitrary Color[] object to the HeatMap as follows:
- Gradient() - Constructor for class weka.dl4j.interpretability.Gradient
-
- GRADIENT_ALPHA - Static variable in class weka.dl4j.interpretability.Gradient
-
- GRADIENT_BLACK_TO_WHITE - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a gradient from black (low) to white (high)
- GRADIENT_BLUE_TO_RED - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a gradient from blue (low) to red (high)
- GRADIENT_GREEN_YELLOW_ORANGE_RED - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a gradient through green, yellow, orange, red
- GRADIENT_HEAT - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a different gradient for hot things (black, brown, orange, white)
- GRADIENT_HOT - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a gradient for hot things (black, red, orange, yellow, white)
- GRADIENT_MAROON_TO_GOLD - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a gradient using the University of Minnesota's school colors, from maroon (low) to gold (high)
- GRADIENT_PLASMA - Static variable in class weka.dl4j.interpretability.Gradient
-
From https://revolution-computing.typepad.com/.a/6a010534b1db25970b01bb0931cd68970d-pi
- GRADIENT_RAINBOW - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a gradient through the rainbow: violet, blue, green, yellow, orange, red
- GRADIENT_RED_TO_GREEN - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a gradient from red (low) to green (high)
- GRADIENT_ROY - Static variable in class weka.dl4j.interpretability.Gradient
-
Produces a gradient through red, orange, yellow
- GradientNormalization - Enum in weka.dl4j.enums
-
Proxy Enum for GradientNormalization
.
- GradientStepFunction - Class in weka.dl4j.stepfunctions
-
A version of DeepLearning4j's GradientStepFunction that implements WEKA option handling.
- GradientStepFunction() - Constructor for class weka.dl4j.stepfunctions.GradientStepFunction
-
- GravesLSTM - Class in weka.dl4j.layers
-
Deprecated.
- GravesLSTM() - Constructor for class weka.dl4j.layers.GravesLSTM
-
Deprecated.
Constructor for setting some defaults.
- GUIProgressBar - Class in weka.core.progress
-
Progress bar panel displayed in the GUI.
- GUIProgressBar(double, String) - Constructor for class weka.core.progress.GUIProgressBar
-
Init the GUI progress bar
- IMAGE_FILE_EXTENSIONS - Static variable in class weka.gui.explorer.ExplorerDl4jInference
-
Allowable image file extensions.
- ImageDirectoryLoader - Class in weka.core.converters
-
Loader for image datasets that are in a folder-organized fashion
i.e., image class for an instance is inferred from the folder name it resides in.
- ImageDirectoryLoader() - Constructor for class weka.core.converters.ImageDirectoryLoader
-
- imageFromINDArray(INDArray) - Method in class weka.dl4j.interpretability.ScoreCAM
-
Takes an INDArray containing an image loaded using the native image loader
libraries associated with DL4J, and converts it into a BufferedImage.
- ImageInstanceIterator - Class in weka.dl4j.iterators.instance
-
An iterator that loads images.
- ImageInstanceIterator() - Constructor for class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- implementsMoreEfficientBatchPrediction() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Performs efficient batch prediction
- InceptionResNetV2 - Class in weka.dl4j.zoo.keras
-
Wrapper class for the different versions of InceptionResNetV2.
- InceptionResNetV2() - Constructor for class weka.dl4j.zoo.keras.InceptionResNetV2
-
Instantiate the model.
- InceptionResNetV2.VARIATION - Enum in weka.dl4j.zoo.keras
-
Different variations of the model.
- InceptionV3 - Class in weka.dl4j.zoo.keras
-
Wrapper class for the different versions of InceptionV3.
- InceptionV3() - Constructor for class weka.dl4j.zoo.keras.InceptionV3
-
Instantiate the model.
- InceptionV3.VARIATION - Enum in weka.dl4j.zoo.keras
-
Different variations of the model.
- increment() - Method in class weka.core.progress.AbstractProgressBar
-
Helper methods so consumers don't need to keep track of iterations.
- increment() - Method in class weka.core.progress.ProgressManager
-
Increment the progress bar.
- inference() - Static method in class weka.examples.WekaDeeplearning4jExamples
-
- inferLabelClasses() - Method in class weka.dl4j.ArffMetaDataLabelGenerator
-
- init(DataSetIterator) - Method in class weka.dl4j.earlystopping.EarlyStopping
-
Initialize the underlying dl4j EarlyStopping object
- init() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
Initialize the ComputationGraph.
- init(int, int, int, int, DataSetIterator, DataSetIterator) - Method in class weka.dl4j.listener.TrainingListener
-
Initialize the iterator with its necessary member variables
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.AbstractZooModel
-
Initialize the ZooModel as MLP.
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.CustomNet
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jAlexNet
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jDarknet19
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jFaceNetNN4Small2
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jInceptionResNetV1
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jLeNet
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jResNet50
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jSqueezeNet
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jVGG
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.Dl4jXception
-
- init() - Method in class weka.dl4j.zoo.keras.KerasZooModel
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasDenseNet
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasEfficientNet
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasInceptionV3
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasNASNet
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasResNet
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasVGG
-
- init(int, long, int[], boolean) - Method in class weka.dl4j.zoo.KerasXception
-
- initialize() - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Initialize the iterator
- initialize() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- initialize() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
-
- initialize() - Method in class weka.dl4j.text.stopwords.Dl4jAbstractStopwords
-
initializes the dictionary
- initialize() - Method in class weka.dl4j.text.stopwords.Dl4jNull
-
- initialize() - Method in class weka.dl4j.text.stopwords.Dl4jRainbow
-
Performs intialization of the scheme.
- initialize() - Method in class weka.dl4j.text.stopwords.Dl4jWordsFromFile
-
Performs intialization of the scheme.
- initializeBackend() - Method in class weka.dl4j.activations.ActivationCube
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationELU
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationHardSigmoid
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationHardTanH
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationIdentity
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationLReLU
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationRationalTanh
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationReLU
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationRReLU
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationSigmoid
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationSoftmax
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationSoftPlus
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationSoftSign
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationSwish
-
- initializeBackend() - Method in class weka.dl4j.activations.ActivationTanH
-
- initializeBackend() - Method in interface weka.dl4j.ApiWrapper
-
Initialize the DL4J backend.
- initializeBackend() - Method in class weka.dl4j.distribution.BinomialDistribution
-
- initializeBackend() - Method in class weka.dl4j.distribution.ConstantDistribution
-
- initializeBackend() - Method in class weka.dl4j.distribution.Disabled
-
- initializeBackend() - Method in class weka.dl4j.distribution.LogNormalDistribution
-
- initializeBackend() - Method in class weka.dl4j.distribution.NormalDistribution
-
- initializeBackend() - Method in class weka.dl4j.distribution.OrthogonalDistribution
-
- initializeBackend() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
-
- initializeBackend() - Method in class weka.dl4j.distribution.UniformDistribution
-
- initializeBackend() - Method in class weka.dl4j.dropout.AlphaDropout
-
- initializeBackend() - Method in class weka.dl4j.dropout.Disabled
-
- initializeBackend() - Method in class weka.dl4j.dropout.Dropout
-
- initializeBackend() - Method in class weka.dl4j.dropout.GaussianDropout
-
- initializeBackend() - Method in class weka.dl4j.dropout.GaussianNoise
-
- initializeBackend() - Method in enum weka.dl4j.enums.AlgoMode
-
- initializeBackend() - Method in enum weka.dl4j.enums.ConvolutionMode
-
- initializeBackend() - Method in enum weka.dl4j.enums.GradientNormalization
-
- initializeBackend() - Method in enum weka.dl4j.enums.PoolingType
-
- initializeBackend() - Method in enum weka.dl4j.enums.PretrainedType
-
- initializeBackend() - Method in class weka.dl4j.layers.ActivationLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.BatchNormalization
-
- initializeBackend() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.Cropping2D
-
- initializeBackend() - Method in class weka.dl4j.layers.DenseLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.DropoutLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.GravesLSTM
-
Deprecated.
- initializeBackend() - Method in class weka.dl4j.layers.LocalResponseNormalization
-
- initializeBackend() - Method in class weka.dl4j.layers.LossLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.LSTM
-
- initializeBackend() - Method in class weka.dl4j.layers.OutputLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.RnnOutputLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- initializeBackend() - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossFMeasure
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossHinge
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossKLD
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossL1
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossL2
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMAPE
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMCXENT
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMixtureDensity
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMSE
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMSLE
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossMultiLabel
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossPoisson
-
- initializeBackend() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
-
- initializeBackend() - Method in class weka.dl4j.schedules.ConstantSchedule
-
- initializeBackend() - Method in class weka.dl4j.schedules.ExponentialSchedule
-
- initializeBackend() - Method in class weka.dl4j.schedules.InverseSchedule
-
- initializeBackend() - Method in class weka.dl4j.schedules.MapSchedule
-
- initializeBackend() - Method in class weka.dl4j.schedules.PolySchedule
-
- initializeBackend() - Method in enum weka.dl4j.schedules.ScheduleType
-
- initializeBackend() - Method in class weka.dl4j.schedules.SigmoidSchedule
-
- initializeBackend() - Method in class weka.dl4j.schedules.StepSchedule
-
- initializeBackend() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
-
- initializeBackend() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
-
- initializeBackend() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
-
- initializeBackend() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
-
- initializeBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
-
- initializeBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
-
- initializeBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
-
- initializeBackend() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
-
- initializeBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
- initializeBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
-
- initializeBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
- initializeBackend() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
-
- initializeBackend() - Method in class weka.dl4j.updater.AdaDelta
-
- initializeBackend() - Method in class weka.dl4j.updater.AdaGrad
-
- initializeBackend() - Method in class weka.dl4j.updater.Adam
-
- initializeBackend() - Method in class weka.dl4j.updater.AdaMax
-
- initializeBackend() - Method in class weka.dl4j.updater.Nadam
-
- initializeBackend() - Method in class weka.dl4j.updater.Nesterovs
-
- initializeBackend() - Method in class weka.dl4j.updater.NoOp
-
- initializeBackend() - Method in class weka.dl4j.updater.RmsProp
-
- initializeBackend() - Method in class weka.dl4j.updater.Sgd
-
- initializeBackend() - Method in class weka.dl4j.weightnoise.Disabled
-
- initializeBackend() - Method in class weka.dl4j.weightnoise.DropConnect
-
- initializeBackend() - Method in class weka.dl4j.weightnoise.WeightNoise
-
- initializeClassifier(Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
The method used to initialize the classifier.
- initializeClassifier(Instances) - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
The method used to initialize the classifier.
- initOnGUI(int, int) - Method in class weka.gui.explorer.ClassSelector
-
Init the GUI elements.
- initPretrained(PretrainedType) - Method in class weka.dl4j.zoo.keras.KerasZooModel
-
- initWordVectors() - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
Initialize the word vectors from the given file
- initZooModel(ZooModel, ComputationGraph, long, int, boolean) - Method in class weka.dl4j.zoo.AbstractZooModel
-
Initialize the zoo model with the supplied params.
- inputColumns() - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
-
Returns the number of input columns.
- inputColumns() - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
-
- inputColumns() - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
-
- inputShape - Static variable in class weka.dl4j.zoo.keras.DenseNet
-
Default input shape of the model.
- inputShape - Static variable in class weka.dl4j.zoo.keras.EfficientNet
-
Default input shape of the model.
- inputShape - Static variable in class weka.dl4j.zoo.keras.InceptionResNetV2
-
Default input shape of the model.
- inputShape - Static variable in class weka.dl4j.zoo.keras.InceptionV3
-
Default input shape of the model.
- inputShape - Static variable in class weka.dl4j.zoo.keras.MobileNet
-
Default input shape of the model.
- inputShape - Static variable in class weka.dl4j.zoo.keras.NASNet
-
Default input shape of the model.
- inputShape - Static variable in class weka.dl4j.zoo.keras.ResNet
-
Default input shape of the model.
- inputShape - Static variable in class weka.dl4j.zoo.keras.VGG
-
Default input shape of the model.
- inputShape - Static variable in class weka.dl4j.zoo.keras.Xception
-
Default input shape of the model.
- instancesToConvDataSet(Instances, int, int, int) - Static method in class weka.dl4j.Utils
-
Converts a set of training instances to a DataSet prepared for the convolution operation using
the height, width and number of channels.
- instancesToDataSet(Instances) - Static method in class weka.dl4j.Utils
-
Converts a set of training instances to a DataSet.
- InvalidInputDataException - Exception in weka.core
-
Exception raised in the case of an invalid input data
- InvalidInputDataException(String) - Constructor for exception weka.core.InvalidInputDataException
-
- InvalidInputDataException(String, Throwable) - Constructor for exception weka.core.InvalidInputDataException
-
- InvalidLayerConfigurationException - Exception in weka.core
-
Exception raised when the the configuration is invalid.
- InvalidLayerConfigurationException(String, Layer) - Constructor for exception weka.core.InvalidLayerConfigurationException
-
- InvalidLayerConfigurationException(String, Layer, Throwable) - Constructor for exception weka.core.InvalidLayerConfigurationException
-
- InvalidNetworkArchitectureException - Exception in weka.core
-
Exception raised when the the network architecture is invalid.
- InvalidNetworkArchitectureException(String) - Constructor for exception weka.core.InvalidNetworkArchitectureException
-
- InvalidNetworkArchitectureException(String, Throwable) - Constructor for exception weka.core.InvalidNetworkArchitectureException
-
- InvalidValidationPercentageException - Exception in weka.core
-
Exception raised in the case of a validation percentage which might be too low / too high
- InvalidValidationPercentageException(String) - Constructor for exception weka.core.InvalidValidationPercentageException
-
- InvalidValidationPercentageException(String, Throwable) - Constructor for exception weka.core.InvalidValidationPercentageException
-
- InverseSchedule - Class in weka.dl4j.schedules
-
Inverse exponential schedule for learning rates.
- InverseSchedule() - Constructor for class weka.dl4j.schedules.InverseSchedule
-
- invokeMethod(Object, String, Object...) - Static method in class weka.dl4j.Utils
-
Invoke a method on a given object.
- isAdditive() - Method in class weka.dl4j.weightnoise.WeightNoise
-
- isAllowParallelTokenization() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- isAppend() - Method in class weka.core.LogConfiguration
-
- isApplyToBias() - Method in class weka.dl4j.weightnoise.WeightNoise
-
- isChannelsLast(INDArray) - Static method in class weka.dl4j.Utils
-
Shape will either be something like [1, 56, 56, 128] or [1, 128, 56, 56]
If it's the former then return true.
- isCollapseDimensions() - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- isCustom() - Method in enum weka.dl4j.enums.PoolingType
-
NONE and MIN are not DL4J pooling types, only used for pooling activations
- isEnableScavenger() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- isFilterMode() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- IsGPUAvailable - Class in weka.dl4j
-
- IsGPUAvailable() - Constructor for class weka.dl4j.IsGPUAvailable
-
- isImage(String) - Method in class weka.core.converters.ImageDirectoryLoader
-
Check whether the supplied path is a valid image.
- isImageChannelsLast() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- isIndeterminate() - Method in class weka.core.progress.AbstractProgressBar
-
Gets the indeterminate status of the progress bar
- isIntermediateEvaluationsEnabled() - Method in class weka.dl4j.listener.EpochListener
-
- isLockGammaBeta() - Method in class weka.dl4j.layers.BatchNormalization
-
- isMetaArff(Instances) - Static method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
Are the input instances from a 'meta' arff (just points to the image location)
- isMiniBatch() - Method in class weka.dl4j.NeuralNetConfiguration
-
- isMinimize() - Method in class weka.dl4j.NeuralNetConfiguration
-
- isPretrained() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- isRequiresPooling() - Method in class weka.dl4j.zoo.AbstractZooModel
-
- isSentencesAlongHeight() - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- isUseAdaGrad() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- isUseHierarchicSoftmax() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- isValidOutputLayer(boolean, Layer) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Checks if the layer is a valid output layer
- iterationDone(Model, int, int) - Method in class weka.dl4j.listener.TrainingListener
-
- iterationIncremented() - Method in interface weka.dl4j.interpretability.listeners.IterationIncrementListener
-
Called when iterations incremented.
- IterationIncrementListener - Interface in weka.dl4j.interpretability.listeners
-
Event listener for when iterations increment.
- iterationsFinished() - Method in interface weka.dl4j.interpretability.listeners.IterationsFinishedListener
-
Called when iterations finish.
- IterationsFinishedListener - Interface in weka.dl4j.interpretability.listeners
-
Event listener for when iterations finish.
- iterationsStarted(int) - Method in interface weka.dl4j.interpretability.listeners.IterationsStartedListener
-
Called when iterations start.
- IterationsStartedListener - Interface in weka.dl4j.interpretability.listeners
-
Event listener for when iterations increment.
- Layer<T extends org.deeplearning4j.nn.conf.layers.Layer> - Class in weka.dl4j.layers
-
Abstract layer class.
- Layer() - Constructor for class weka.dl4j.layers.Layer
-
- listOptions() - Method in class weka.core.converters.ImageDirectoryLoader
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.core.LogConfiguration
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.Activation
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationCube
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationELU
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationHardSigmoid
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationHardTanH
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationIdentity
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationLReLU
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationRationalTanh
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationReLU
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationRReLU
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSigmoid
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSoftmax
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSoftPlus
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSoftSign
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSwish
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationTanH
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.BinomialDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.ConstantDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.Distribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.LogNormalDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.NormalDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.OrthogonalDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.UniformDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.dropout.AbstractDropout
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.dropout.AlphaDropout
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.dropout.Dropout
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.dropout.GaussianDropout
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.dropout.GaussianNoise
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.earlystopping.EarlyStopping
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.inference.CustomModelSetup
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.inference.ModelOutputDecoder
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.IsGPUAvailable
-
Returns an enumeration of all the available options..
- listOptions() - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.ActivationLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.BatchNormalization
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.BroadcastLambdaLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.ConvolutionLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.Cropping2D
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.DenseLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.DropoutLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.FeedForwardLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.GravesLSTM
-
Deprecated.
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.Layer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.LocalResponseNormalization
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.LossLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.LSTM
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.NoParamLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.OutputLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.RnnOutputLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.SameDiffLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.SubsamplingLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.listener.TrainingListener
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossFMeasure
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossHinge
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossKLD
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossL1
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossL2
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMAE
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMAPE
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMCXENT
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMixtureDensity
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMSE
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMSLE
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMultiLabel
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossPoisson
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.NeuralNetConfiguration
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.schedules.ConstantSchedule
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.schedules.ExponentialSchedule
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.schedules.InverseSchedule
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.schedules.MapSchedule
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.schedules.PolySchedule
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.schedules.Schedule
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.schedules.SigmoidSchedule
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.schedules.StepSchedule
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.StepFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.AdaDelta
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.AdaGrad
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.Adam
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.AdaMax
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.Nadam
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.Nesterovs
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.RmsProp
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.Sgd
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.updater.Updater
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.weightnoise.DropConnect
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.weightnoise.WeightNoise
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.zoo.AbstractZooModel
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- listOptions() - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- loadInferenceModel(File, AbstractZooModel) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Load a Dl4jMlpClassifier for use in the Inference Panel - no need to supply Instances or InstanceIterators
- loadModel(Instances, File, AbstractZooModel, AbstractInstanceIterator) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Load a Dl4jMlpClassifier for use with the given instances and iterator
- loadZooModelNoData(int, long, int[]) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Load a ComputationGraph without any data - used in the Dl4j Inference panel
- LocalResponseNormalization - Class in weka.dl4j.layers
-
A version of DeepLearning4j's LocalResponseNormalization layer that implements WEKA option
handling.
- LocalResponseNormalization() - Constructor for class weka.dl4j.layers.LocalResponseNormalization
-
Constructor for setting some defaults.
- Locations - Static variable in class weka.dl4j.zoo.keras.KerasConstants
-
URLs of model files.
- log(String) - Method in class weka.dl4j.listener.EpochListener
-
- log(String) - Method in class weka.dl4j.listener.TrainingListener
-
Log a message
- LogConfiguration - Class in weka.core
-
General logger configuration.
- LogConfiguration() - Constructor for class weka.core.LogConfiguration
-
- LogConfiguration.LogLevel - Enum in weka.core
-
Available log levels.
- LogNormalDistribution - Class in weka.dl4j.distribution
-
A version of DeepLearning4j's LogNormalDistribution that implements WEKA option handling.
- LogNormalDistribution() - Constructor for class weka.dl4j.distribution.LogNormalDistribution
-
- LossBinaryXENT - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossBinaryXENT that implements WEKA option handling.
- LossBinaryXENT() - Constructor for class weka.dl4j.lossfunctions.LossBinaryXENT
-
- LossCosineProximity - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossCosineProximity that implements WEKA option handling.
- LossCosineProximity() - Constructor for class weka.dl4j.lossfunctions.LossCosineProximity
-
- LossFMeasure - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossFMeasure that implements WEKA option handling.
- LossFMeasure() - Constructor for class weka.dl4j.lossfunctions.LossFMeasure
-
- LossFunction<T extends org.nd4j.linalg.lossfunctions.ILossFunction> - Class in weka.dl4j.lossfunctions
-
- LossFunction() - Constructor for class weka.dl4j.lossfunctions.LossFunction
-
- LossHinge - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossHinge that implements WEKA option handling.
- LossHinge() - Constructor for class weka.dl4j.lossfunctions.LossHinge
-
- LossKLD - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossKLD that implements WEKA option handling.
- LossKLD() - Constructor for class weka.dl4j.lossfunctions.LossKLD
-
- LossL1 - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossL1 that implements WEKA option handling.
- LossL1() - Constructor for class weka.dl4j.lossfunctions.LossL1
-
- LossL2 - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossL2 that implements WEKA option handling.
- LossL2() - Constructor for class weka.dl4j.lossfunctions.LossL2
-
- LossLayer - Class in weka.dl4j.layers
-
A version of DeepLearning4j's LossLayer layer that implements WEKA option handling.
- LossLayer() - Constructor for class weka.dl4j.layers.LossLayer
-
Constructor for setting some defaults.
- LossMAE - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMAE that implements WEKA option handling.
- LossMAE() - Constructor for class weka.dl4j.lossfunctions.LossMAE
-
- LossMAPE - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMAPE that implements WEKA option handling.
- LossMAPE() - Constructor for class weka.dl4j.lossfunctions.LossMAPE
-
- LossMCXENT - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMCXENT that implements WEKA option handling.
- LossMCXENT() - Constructor for class weka.dl4j.lossfunctions.LossMCXENT
-
- LossMixtureDensity - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMixtureDensity that implements WEKA option handling.
- LossMixtureDensity() - Constructor for class weka.dl4j.lossfunctions.LossMixtureDensity
-
- LossMSE - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMSE that implements WEKA option handling.
- LossMSE() - Constructor for class weka.dl4j.lossfunctions.LossMSE
-
- LossMSLE - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMSLE that implements WEKA option handling.
- LossMSLE() - Constructor for class weka.dl4j.lossfunctions.LossMSLE
-
- LossMultiLabel - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMultiLabel that implements WEKA option handling.
- LossMultiLabel() - Constructor for class weka.dl4j.lossfunctions.LossMultiLabel
-
- LossNegativeLogLikelihood - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossNegativeLogLikelihood that implements WEKA option handling.
- LossNegativeLogLikelihood() - Constructor for class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
- LossPoisson - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossPoisson that implements WEKA option handling.
- LossPoisson() - Constructor for class weka.dl4j.lossfunctions.LossPoisson
-
- LossSquaredHinge - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossSquaredHinge that implements WEKA option handling.
- LossSquaredHinge() - Constructor for class weka.dl4j.lossfunctions.LossSquaredHinge
-
- LowCasePreProcessor - Class in weka.dl4j.text.tokenization.preprocessor
-
- LowCasePreProcessor() - Constructor for class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
-
- LowCasePreProcessorImpl - Class in weka.dl4j.text.tokenization.preprocessor.impl
-
A serializable version of DeepLearning4j's LowCasePreProcessor.
- LowCasePreProcessorImpl() - Constructor for class weka.dl4j.text.tokenization.preprocessor.impl.LowCasePreProcessorImpl
-
- LSTM - Class in weka.dl4j.layers
-
A version of DeepLearning4j's LSTM layer that implements WEKA option handling.
- LSTM() - Constructor for class weka.dl4j.layers.LSTM
-
Constructor for setting some defaults.
- SaliencyMapGBC() - Constructor for class weka.gui.explorer.SaliencyMapWindow.SaliencyMapGBC
-
Init.
- SaliencyMapGBC(int) - Constructor for class weka.gui.explorer.SaliencyMapWindow.SaliencyMapGBC
-
Init.
- SaliencyMapWindow - Class in weka.gui.explorer
-
JPanel showing the saliency map generated, as well as options for configuring it.
- SaliencyMapWindow() - Constructor for class weka.gui.explorer.SaliencyMapWindow
-
Initialize the window.
- SaliencyMapWindow.SaliencyMapGBC - Class in weka.gui.explorer
-
Wrapper class for GBC which defaults to inset size of 5.
- SameDiffLayer<T extends org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer> - Class in weka.dl4j.layers
-
Abstract SameDiff layer.
- SameDiffLayer() - Constructor for class weka.dl4j.layers.SameDiffLayer
-
- saveResult(BufferedImage) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
Save the supplied composite image to a file.
- Schedule<T extends org.nd4j.linalg.schedule.ISchedule> - Class in weka.dl4j.schedules
-
Default schedule interface that implements WEKA option handling.
- Schedule() - Constructor for class weka.dl4j.schedules.Schedule
-
- ScheduleType - Enum in weka.dl4j.schedules
-
Proxy Enum for ScheduleType
.
- ScoreCAM - Class in weka.dl4j.interpretability
-
Implementation of the ScoreCAM saliency map generation method.
- ScoreCAM() - Constructor for class weka.dl4j.interpretability.ScoreCAM
-
- SeperableConvolution2DLayer - Class in weka.dl4j.layers
-
A version of DeepLearning4j's SeperableConvolution2DLayer that implements WEKA option handling.
- SeperableConvolution2DLayer() - Constructor for class weka.dl4j.layers.SeperableConvolution2DLayer
-
Constructor for setting some defaults.
- setAction(Dl4jStringToWordEmbeddings.Action) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setActivationFunction(Activation) - Method in class weka.dl4j.layers.ActivationLayer
-
- setActivationFunction(Activation) - Method in class weka.dl4j.layers.FeedForwardLayer
-
- setAdditive(boolean) - Method in class weka.dl4j.weightnoise.WeightNoise
-
- setAllowParallelTokenization(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setAlpha(double) - Method in class weka.dl4j.activations.ActivationELU
-
- setAlpha(double) - Method in class weka.dl4j.activations.ActivationLReLU
-
- setAlpha(double) - Method in class weka.dl4j.dropout.AlphaDropout
-
- setAlpha(double) - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- setAppend(boolean) - Method in class weka.core.LogConfiguration
-
Whether to append to the existing log file or not.
- setApplyToBias(boolean) - Method in class weka.dl4j.weightnoise.WeightNoise
-
- setBackend(T) - Method in class weka.dl4j.activations.Activation
-
- setBackend(ActivationELU) - Method in class weka.dl4j.activations.ActivationELU
-
- setBackend(ActivationRReLU) - Method in class weka.dl4j.activations.ActivationRReLU
-
- setBackend(T) - Method in interface weka.dl4j.ApiWrapper
-
Set the DL4J backend.
- setBackend(T) - Method in class weka.dl4j.distribution.Distribution
-
- setBackend(T) - Method in class weka.dl4j.dropout.AbstractDropout
-
- setBackend(ConvolutionLayer.AlgoMode) - Method in enum weka.dl4j.enums.AlgoMode
-
- setBackend(ConvolutionMode) - Method in enum weka.dl4j.enums.ConvolutionMode
-
- setBackend(GradientNormalization) - Method in enum weka.dl4j.enums.GradientNormalization
-
- setBackend(PoolingType) - Method in enum weka.dl4j.enums.PoolingType
-
- setBackend(PretrainedType) - Method in enum weka.dl4j.enums.PretrainedType
-
- setBackend(CustomBroadcast) - Method in class weka.dl4j.layers.BroadcastLambdaLayer
-
- setBackend(T) - Method in class weka.dl4j.layers.Layer
-
- setBackend(T) - Method in class weka.dl4j.lossfunctions.LossFunction
-
- setBackend(ConstantSchedule.ConstantScheduleImpl) - Method in class weka.dl4j.schedules.ConstantSchedule
-
- setBackend(ExponentialSchedule) - Method in class weka.dl4j.schedules.ExponentialSchedule
-
- setBackend(InverseSchedule) - Method in class weka.dl4j.schedules.InverseSchedule
-
- setBackend(MapSchedule) - Method in class weka.dl4j.schedules.MapSchedule
-
- setBackend(PolySchedule) - Method in class weka.dl4j.schedules.PolySchedule
-
- setBackend(ScheduleType) - Method in enum weka.dl4j.schedules.ScheduleType
-
- setBackend(SigmoidSchedule) - Method in class weka.dl4j.schedules.SigmoidSchedule
-
- setBackend(StepSchedule) - Method in class weka.dl4j.schedules.StepSchedule
-
- setBackend(T) - Method in class weka.dl4j.stepfunctions.StepFunction
-
- setBackend(T) - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
-
- setBackend(T) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
-
- setBackend(T) - Method in class weka.dl4j.updater.Updater
-
- setBackend(T) - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
-
- setBatchSize(int) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- setBatchSize(int) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- setBatchSize(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setBeta(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setBeta1(double) - Method in class weka.dl4j.updater.Adam
-
- setBeta1(double) - Method in class weka.dl4j.updater.AdaMax
-
- setBeta1(double) - Method in class weka.dl4j.updater.Nadam
-
- setBeta2(double) - Method in class weka.dl4j.updater.Adam
-
- setBeta2(double) - Method in class weka.dl4j.updater.AdaMax
-
- setBeta2(double) - Method in class weka.dl4j.updater.Nadam
-
- setBiasInit(double) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setBiasUpdater(Updater) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setBuiltInClassMap(ClassmapType) - Method in class weka.dl4j.inference.ModelOutputDecoder
-
- setCacheMode(CacheMode) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setChannelsLast(boolean) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- setChannelsLast(boolean) - Method in class weka.dl4j.zoo.AbstractZooModel
-
- setClassMap(String[]) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- setClassMapFile(File) - Method in class weka.dl4j.inference.ModelOutputDecoder
-
- setCollapseDimensions(boolean) - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- setComputationGraph(ComputationGraph) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- setConcat_words(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setConcatWords(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
- setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setCudnnAlgoMode(AlgoMode) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setCudnnAlgoMode(AlgoMode) - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
- setCursor(int) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- setCustomModelSetup(CustomModelSetup) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- setCustomModelSetup(CustomModelSetup) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- setDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setDecayRate(double) - Method in class weka.dl4j.schedules.StepSchedule
-
- setDelimiters(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- setDelimiters(String) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
- setDist(Distribution<? extends Distribution>) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setDistribution(Distribution<? extends Distribution>) - Method in class weka.dl4j.weightnoise.WeightNoise
-
- setDl4jLogLevel(LogConfiguration.LogLevel) - Method in class weka.core.LogConfiguration
-
Set the Dl4j log level.
- setDl4jMlpClassifier(Dl4jMlpClassifier) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- setDoNotClearFilesystemCache(boolean) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setDropout(AbstractDropout) - Method in class weka.dl4j.layers.DropoutLayer
-
- setDropout(AbstractDropout) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setEarlyStopping(EarlyStopping) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setEmbedding_prefix(String) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setEnableScavenger(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setEpochs(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setEps(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setEps(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setEpsilon(double) - Method in class weka.dl4j.updater.AdaDelta
-
- setEpsilon(double) - Method in class weka.dl4j.updater.AdaGrad
-
- setEpsilon(double) - Method in class weka.dl4j.updater.Adam
-
- setEpsilon(double) - Method in class weka.dl4j.updater.AdaMax
-
- setEpsilon(double) - Method in class weka.dl4j.updater.Nadam
-
- setEpsilon(double) - Method in class weka.dl4j.updater.RmsProp
-
- setExplorer(Explorer) - Method in class weka.gui.explorer.ExplorerDl4jInference
-
Sets the Explorer to use as parent frame (used for sending notifications
about changes in the data)
- setExtraLayersToRemove(String[]) - Method in class weka.dl4j.zoo.AbstractZooModel
-
- setFeatureExtractionLayer(String) - Method in class weka.dl4j.zoo.AbstractZooModel
-
- setFieldValue(Object, String, T) - Static method in class weka.dl4j.Utils
-
Set private field of a given object.
- setFilterMode(boolean) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setFilterType(SelectedTag) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setGain(double) - Method in class weka.dl4j.distribution.OrthogonalDistribution
-
- setGamma(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setGamma(double) - Method in class weka.dl4j.schedules.ExponentialSchedule
-
- setGamma(double) - Method in class weka.dl4j.schedules.InverseSchedule
-
- setGamma(double) - Method in class weka.dl4j.schedules.SigmoidSchedule
-
- setGateActivationFn(Activation) - Method in class weka.dl4j.layers.GravesLSTM
-
Deprecated.
- setGateActivationFn(Activation) - Method in class weka.dl4j.layers.LSTM
-
- setGenerateSaliencyMap(boolean) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- setGradientCheck(boolean) - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setGradientNormalizationThreshold(double) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setHeight(int) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
- setHeight(int) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- setHeight(int) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- setImageChannelsLast(boolean) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- setImageInstanceIterator(ImageInstanceIterator) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- setImagePreProcessingScaler(ImagePreProcessingScaler) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- setImagesLocation(File) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- setImagesLocation(File) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- setIndeterminate(boolean) - Method in class weka.core.progress.AbstractProgressBar
-
Sets the indeterminate status of the progress bar
- setInitialValue(double) - Method in class weka.dl4j.schedules.ConstantSchedule
-
- setInitialValue(double) - Method in class weka.dl4j.schedules.MapSchedule
-
Deprecated.
- setInitialValue(double) - Method in class weka.dl4j.schedules.Schedule
-
- setInputChannels(int) - Method in class weka.dl4j.inference.CustomModelSetup
-
- setInputDirectory(File) - Method in class weka.core.converters.ImageDirectoryLoader
-
- setInputFilename(String) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- setInputHeight(int) - Method in class weka.dl4j.inference.CustomModelSetup
-
- setInputShape(int[][]) - Method in class weka.dl4j.zoo.keras.KerasZooModel
-
- setInputWidth(int) - Method in class weka.dl4j.inference.CustomModelSetup
-
- setInstanceIterator(AbstractInstanceIterator) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setInstanceIterator(AbstractInstanceIterator) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- setInstances(Instances) - Method in class weka.gui.explorer.ExplorerDl4jInference
-
Tells the panel to use a new set of instances.
- setIntermediateEvaluationsEnabled(boolean) - Method in class weka.dl4j.listener.EpochListener
-
- setIterationListener(TrainingListener) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setIterations(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setKernelSize(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setKernelSize(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setKernelSizeX(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setKernelSizeX(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setKernelSizeY(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setKernelSizeY(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setL1(double) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setL2(double) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setLambda(double) - Method in class weka.dl4j.dropout.AlphaDropout
-
- setLambda(double) - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- setLayerName(String) - Method in class weka.dl4j.layers.Layer
-
- setLayers(Layer...) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setLayerSize(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setLearningRate(double) - Method in class weka.dl4j.updater.AdaDelta
-
Set the learning rate
- setLearningRate(double) - Method in class weka.dl4j.updater.Updater
-
Set the learning rate
- setLearningRate(double) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setLearningRateSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.updater.Updater
-
Set the learning rate schedule
- setLoadLayerSpecification(boolean) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setLockGammaAndBeta(boolean) - Method in class weka.dl4j.layers.BatchNormalization
-
- setLockGammaBeta(boolean) - Method in class weka.dl4j.layers.BatchNormalization
-
- setLog(Logger) - Method in class weka.gui.explorer.ExplorerDl4jInference
-
Sets the Logger to receive informational messages
- setLogConfig(LogConfiguration) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Set the log configuration.
- setLogFile(File) - Method in class weka.core.LogConfiguration
-
Set the log file
- setLossFn(LossFunction<? extends ILossFunction>) - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
- setLossFn(LossFunction<? extends ILossFunction>) - Method in class weka.dl4j.layers.LossLayer
-
- setLossFn(LossFunction<? extends ILossFunction>) - Method in class weka.dl4j.layers.OutputLayer
-
- setLossFn(LossFunction<? extends ILossFunction>) - Method in class weka.dl4j.layers.RnnOutputLayer
-
- setLower(double) - Method in class weka.dl4j.distribution.UniformDistribution
-
- setLowerBound(double) - Method in class weka.dl4j.activations.ActivationRReLU
-
- setMaxEpochsNoImprovement(int) - Method in class weka.dl4j.earlystopping.EarlyStopping
-
- setMaxIter(int) - Method in class weka.dl4j.schedules.PolySchedule
-
- setMaxProgress(double) - Method in class weka.core.progress.AbstractProgressBar
-
Set the max progress value
- setMaxProgress(double) - Method in class weka.core.progress.ProgressManager
-
Set the maximum progress value of the progress bar
- setMean(double) - Method in class weka.dl4j.distribution.LogNormalDistribution
-
- setMean(double) - Method in class weka.dl4j.distribution.NormalDistribution
-
- setMean(double) - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
-
- setMinibatch(boolean) - Method in class weka.dl4j.layers.BatchNormalization
-
- setMiniBatch(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setMinimize(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setMinLearningRate(double) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setMinWordFrequency(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setModelInputShape(InputType.InputTypeConvolutional) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- setModelInputShape(InputType.InputTypeConvolutional) - Method in class weka.dl4j.interpretability.ScoreCAM
-
- setModelName(String) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapGenerator
-
- setModelOutputDecoder(ModelOutputDecoder) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- setMomentum(double) - Method in class weka.dl4j.updater.Nesterovs
-
- setN(int) - Method in class weka.dl4j.inference.TopNPredictions
-
- setN(int) - Method in class weka.dl4j.listener.EpochListener
-
- setNd4jLogLevel(LogConfiguration.LogLevel) - Method in class weka.core.LogConfiguration
-
Set the Nd4j log level.
- setNegative(double) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setNeuralNetConfiguration(NeuralNetConfiguration) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setNMax(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
- setNMax(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- setNMax(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- setNMax(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
- setNMin(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
- setNMin(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- setNMin(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- setNMin(int) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
- setNormalizeHeatmap(boolean) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- setNOut(long) - Method in class weka.dl4j.layers.BatchNormalization
-
Deprecated.
- setNOut(long) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setNOut(long) - Method in class weka.dl4j.layers.FeedForwardLayer
-
- setNumberOfTrials(int) - Method in class weka.dl4j.distribution.BinomialDistribution
-
- setNumChannels(int) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
- setNumChannels(int) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- setNumChannels(int) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- setNumEpochs(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setNumFExtractOutputs(int) - Method in class weka.dl4j.zoo.AbstractZooModel
-
- setNumGPUs(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setOptimizationAlgo(OptimizationAlgorithm) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setOptions(String[]) - Method in class weka.core.converters.ImageDirectoryLoader
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.core.LogConfiguration
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.Activation
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationCube
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationELU
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationHardSigmoid
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationHardTanH
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationIdentity
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationLReLU
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationRationalTanh
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationReLU
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationRReLU
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSigmoid
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftmax
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftPlus
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftSign
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSwish
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationTanH
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.BinomialDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.ConstantDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.Distribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.LogNormalDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.NormalDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.OrthogonalDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.UniformDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.dropout.AbstractDropout
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.dropout.AlphaDropout
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.dropout.Dropout
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.dropout.GaussianDropout
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.dropout.GaussianNoise
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.earlystopping.EarlyStopping
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.inference.CustomModelSetup
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.inference.ModelOutputDecoder
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.IsGPUAvailable
-
Sets the OptionHandler's options using the given list.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.ActivationLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.BatchNormalization
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.BroadcastLambdaLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.CenterLossOutputLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.ConvolutionLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.Cropping2D
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.DenseLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.DepthwiseConvolution2DLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.DropoutLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.FeedForwardLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.GravesLSTM
-
Deprecated.
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.Layer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.LocalResponseNormalization
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.LossLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.LSTM
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.NoParamLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.OutputLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.RnnOutputLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.SameDiffLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.SeperableConvolution2DLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.SubsamplingLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.listener.TrainingListener
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossCosineProximity
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossFMeasure
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossHinge
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossKLD
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossL1
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossL2
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMAE
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMAPE
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMCXENT
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMixtureDensity
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMSE
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMSLE
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMultiLabel
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossPoisson
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.NeuralNetConfiguration
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.schedules.ConstantSchedule
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.schedules.ExponentialSchedule
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.schedules.InverseSchedule
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.schedules.MapSchedule
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.schedules.PolySchedule
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.schedules.Schedule
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.schedules.SigmoidSchedule
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.schedules.StepSchedule
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.GradientStepFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.StepFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.CommonPreProcessor
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.EndingPreProcessor
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.LowCasePreProcessor
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.preprocessor.TokenPreProcess
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.CharacterNGramTokenizerFactory
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.DefaultTokenizerFactory
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.NGramTokenizerFactory
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TokenizerFactory
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.TweetNLPTokenizerFactory
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.AdaDelta
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.AdaGrad
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.Adam
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.AdaMax
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.Nadam
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.Nesterovs
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.RmsProp
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.Sgd
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.updater.Updater
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.weightnoise.AbstractWeightNoise
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.weightnoise.DropConnect
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.weightnoise.WeightNoise
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.zoo.AbstractZooModel
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
Parses the options for this object.
- setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
Parses the options for this object.
- setOutputFile(File) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- setOutputFileName(String) - Method in class weka.core.converters.ImageDirectoryLoader
-
- setOutputLayer(String) - Method in class weka.dl4j.zoo.AbstractZooModel
-
- setP(double) - Method in class weka.dl4j.dropout.AlphaDropout
-
- setP(double) - Method in class weka.dl4j.dropout.Dropout
-
- setPadding(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setPadding(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPadding(int[]) - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
- setPaddingColumns(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setPaddingColumns(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPaddingColumns(int) - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
- setPaddingRows(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setPaddingRows(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPaddingRows(int) - Method in class weka.dl4j.layers.ZeroPaddingLayer
-
- setParameterAveragingFrequency(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setPnorm(int) - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- setPnorm(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPoolingDimensions(int[]) - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- setPoolingType(PoolingType) - Method in class weka.dl4j.layers.GlobalPoolingLayer
-
- setPoolingType(PoolingType) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPoolingType(PoolingType) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- setPower(double) - Method in class weka.dl4j.schedules.InverseSchedule
-
- setPower(double) - Method in class weka.dl4j.schedules.PolySchedule
-
- setPrefetchBufferSize(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setPreProcessor(DataSetPreProcessor) - Method in class weka.dl4j.iterators.dataset.DefaultDataSetIterator
-
Sets the preprocessor.
- setPreProcessor(DataSetPreProcessor) - Method in class weka.dl4j.iterators.dataset.sequence.RelationalDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class weka.dl4j.iterators.dataset.sequence.text.rnn.RnnTextEmbeddingDataSetIterator
-
- setPreProcessor(TokenPreProcess) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
Sets the preprocessor action.
- setPretrainedType(PretrainedType) - Method in class weka.dl4j.zoo.AbstractZooModel
-
- setPretrainedType(PretrainedType) - Method in class weka.dl4j.zoo.Dl4jVGG
-
- setProbabilityOfSuccess(double) - Method in class weka.dl4j.distribution.BinomialDistribution
-
- setProgress(double) - Method in class weka.core.progress.AbstractProgressBar
-
Main update method.
- setProgress(double) - Method in class weka.core.progress.ProgressManager
-
Set the progress to a specific value
- setProgressMessage(String) - Method in class weka.core.progress.AbstractProgressBar
-
Set the progress message
- setProgressMessage(String) - Method in class weka.core.progress.ProgressManager
-
Set the progress message to be displayed in the progress bar
- setpSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.dropout.AlphaDropout
-
- setpSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.dropout.Dropout
-
- setQueueSize(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setRateSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.dropout.GaussianDropout
-
- setRateSchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.dropout.GaussianNoise
-
- setRelationalAttributeIndex(int) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
- setRequiresPooling(boolean) - Method in class weka.dl4j.zoo.AbstractZooModel
-
- setResume(boolean) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
If called with argument true, then the next time done() is called the model is effectively
"frozen" and no further iterations can be performed
- setRho(double) - Method in class weka.dl4j.updater.AdaDelta
-
- setRmsDecay(double) - Method in class weka.dl4j.updater.RmsProp
-
- setSaliencyMapWrapper(AbstractCNNSaliencyMapWrapper) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- setSampling(double) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setScheduleType(ScheduleType) - Method in class weka.dl4j.schedules.Schedule
-
- setSeed(long) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setSeed(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setSerializedModelFile(File) - Method in class weka.dl4j.inference.CustomModelSetup
-
- setSerializedModelFile(File) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- setSource(File) - Method in class weka.core.converters.ImageDirectoryLoader
-
- setSource(File) - Method in class weka.core.converters.Word2VecLoader
-
Resets the Loader object and sets the source of the data set to be the supplied File object.
- setStd(double) - Method in class weka.dl4j.distribution.LogNormalDistribution
-
- setStd(double) - Method in class weka.dl4j.distribution.NormalDistribution
-
- setStd(double) - Method in class weka.dl4j.distribution.TruncatedNormalDistribution
-
- setStdDev(double) - Method in class weka.dl4j.dropout.GaussianNoise
-
- setStemmer(Stemmer) - Method in class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
-
- setStemmer(Stemmer) - Method in class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
-
- setStep(double) - Method in class weka.dl4j.schedules.StepSchedule
-
- setStepSize(int) - Method in class weka.dl4j.schedules.SigmoidSchedule
-
- setStopwords(Dl4jAbstractStopwords) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- setStopWordsHandler(Dl4jAbstractStopwords) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setStride(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setStride(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setStrideColumns(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setStrideColumns(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setStrideRows(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setStrideRows(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setStructure() - Method in class weka.core.converters.Word2VecLoader
-
- setTargetClass(int) - Method in class weka.gui.explorer.ClassSelector
-
- setTargetClassIDs(String) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- setTargetClassIDsAsInt(int[]) - Method in class weka.dl4j.interpretability.AbstractCNNSaliencyMapWrapper
-
- settBPTTbackwardLength(int) - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
- settBPTTforwardLength(int) - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
- setTextIndex(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
Set the attribute's index with the string to process.
- setTextsLocation(File) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
- setTextsLocation(File) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
- setTokenizerFactory(TokenizerFactory) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- setTokenizerFactory(TokenizerFactory) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setTokenPreProcess(TokenPreProcess) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.CharacterNGramTokenizerFactoryImpl
-
- setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.NGramTokenizerFactoryImpl
-
- setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.factory.impl.TweetNLPTokenizerFactoryImpl
-
- setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.TweetNLPTokenizer
-
- setTokenPreProcessor(TokenPreProcess) - Method in class weka.dl4j.text.tokenization.tokenizer.WekaTokenizer
-
- setTrainBatchSize(int) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Setting the training batch size
- setTrainBatchSize(int) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- setTransformationLayerNames(String[]) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- setTransformationLayers(DenseLayer[]) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- setTruncateLength(int) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
- setTruncateLength(int) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- setUnknown(INDArray) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- setUnknownWordHandling(CnnSentenceDataSetIterator.UnknownWordHandling) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- setUpdater(Updater) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setUpper(double) - Method in class weka.dl4j.distribution.UniformDistribution
-
- setUpperBound(double) - Method in class weka.dl4j.activations.ActivationRReLU
-
- setUseAdaGrad(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setUseCustomModel(boolean) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- setUseCustomSetup(boolean) - Method in class weka.dl4j.inference.CustomModelSetup
-
- setUseDefaultFeatureLayer(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
- setUseHierarchicSoftmax(boolean) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWord2Vec
-
- setUseNormalizedWordVectors(boolean) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- setValidationSetPercentage(double) - Method in class weka.dl4j.earlystopping.EarlyStopping
-
- setValue(double) - Method in class weka.dl4j.distribution.ConstantDistribution
-
- setValues(Map<Integer, Double>) - Method in class weka.dl4j.schedules.MapSchedule
-
- setVariation(Dl4jDarknet19.VARIATION) - Method in class weka.dl4j.zoo.Dl4jDarknet19
-
- setVariation(VGG.VARIATION) - Method in class weka.dl4j.zoo.Dl4jVGG
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.DenseNet
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.EfficientNet
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.InceptionResNetV2
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.InceptionV3
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.KerasZooModel
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.MobileNet
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.NASNet
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.ResNet
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.VGG
-
- setVariation(Enum) - Method in class weka.dl4j.zoo.keras.Xception
-
- setVariation(DenseNet.VARIATION) - Method in class weka.dl4j.zoo.KerasDenseNet
-
- setVariation(EfficientNet.VARIATION) - Method in class weka.dl4j.zoo.KerasEfficientNet
-
- setVariation(InceptionV3.VARIATION) - Method in class weka.dl4j.zoo.KerasInceptionV3
-
- setVariation(NASNet.VARIATION) - Method in class weka.dl4j.zoo.KerasNASNet
-
- setVariation(ResNet.VARIATION) - Method in class weka.dl4j.zoo.KerasResNet
-
- setVariation(VGG.VARIATION) - Method in class weka.dl4j.zoo.KerasVGG
-
- setVariation(Xception.VARIATION) - Method in class weka.dl4j.zoo.KerasXception
-
- setWeightInit(WeightInit) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setWeightNoise(AbstractWeightNoise) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setWeightRetainProbability(double) - Method in class weka.dl4j.weightnoise.DropConnect
-
- setWeightRetainProbabilitySchedule(Schedule<? extends ISchedule>) - Method in class weka.dl4j.weightnoise.DropConnect
-
- setWekaDl4jLogLevel(LogConfiguration.LogLevel) - Method in class weka.core.LogConfiguration
-
Set the WekaDeeplearning4j log level.
- setWidth(int) - Method in class weka.dl4j.iterators.instance.ConvolutionInstanceIterator
-
- setWidth(int) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
- setWidth(int) - Method in class weka.dl4j.iterators.instance.ResizeImageInstanceIterator
-
- setWindowSize(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setWordVectorLocation(File) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
Set the word vector location and try to initialize it
- setWordVectors(WordVectors) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator
-
- setWordVectors(WordVectors) - Method in class weka.dl4j.iterators.instance.sequence.text.AbstractTextEmbeddingIterator
-
- setWorkers(int) - Method in class weka.filters.unsupervised.attribute.Dl4jStringToWordEmbeddings
-
- setZooModel(AbstractZooModel) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Set the modelzoo zooModel
- setZooModel(AbstractZooModel) - Method in class weka.classifiers.functions.RnnSequenceClassifier
-
Deprecated.
- setZooModelType(AbstractZooModel) - Method in class weka.dl4j.inference.Dl4jCNNExplorer
-
- setZooModelType(AbstractZooModel) - Method in class weka.filters.unsupervised.attribute.Dl4jMlpFilter
-
Clear the old transformation layers and set the new one if we've changed to a different model type.
- Sgd - Class in weka.dl4j.updater
-
A WEKA version of DeepLearning4j's Sgd.
- Sgd() - Constructor for class weka.dl4j.updater.Sgd
-
- SigmoidSchedule - Class in weka.dl4j.schedules
-
Sigmoid schedule for learning rates.
- SigmoidSchedule() - Constructor for class weka.dl4j.schedules.SigmoidSchedule
-
- splitTrainVal(Instances, double) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Split the dataset into p% train an (100-p)% test set.
- start() - Method in class weka.core.progress.AbstractProgressBar
-
Initialize all values to 0 and start the progress manager.
- start() - Method in class weka.core.progress.ProgressManager
-
Show the progress bar and start the timer.
- StemmingPreProcessor - Class in weka.dl4j.text.tokenization.preprocessor
-
- StemmingPreProcessor() - Constructor for class weka.dl4j.text.tokenization.preprocessor.StemmingPreProcessor
-
- StemmingPreProcessorImpl - Class in weka.dl4j.text.tokenization.preprocessor.impl
-
Implements basic cleaning inherited from CommonPreProcessor + does stemming using a Weka
Stemmer.
- StemmingPreProcessorImpl() - Constructor for class weka.dl4j.text.tokenization.preprocessor.impl.StemmingPreProcessorImpl
-
- StepFunction<T extends org.deeplearning4j.nn.conf.stepfunctions.StepFunction> - Class in weka.dl4j.stepfunctions
-
StepFunction wrapper for Deeplearning4j's StepFunction
classes.
- StepFunction() - Constructor for class weka.dl4j.stepfunctions.StepFunction
-
- StepSchedule - Class in weka.dl4j.schedules
-
Step schedule for learning rates.
- StepSchedule() - Constructor for class weka.dl4j.schedules.StepSchedule
-
- stopwords(AbstractStopwords) - Method in class weka.dl4j.iterators.dataset.sequence.text.cnn.CnnSentenceDataSetIterator.Builder
-
Set stopwords.
- stopwordsTipText() - Method in class weka.dl4j.text.stopwords.Dl4jWordsFromFile
-
Returns the tip text for this property.
- SubsamplingLayer - Class in weka.dl4j.layers
-
A version of DeepLearning4j's SubsamplingLayer that implements WEKA option handling.
- SubsamplingLayer() - Constructor for class weka.dl4j.layers.SubsamplingLayer
-
Constructor for setting some defaults.
- validate(Instances) - Method in class weka.dl4j.iterators.instance.AbstractInstanceIterator
-
Validates the input dataset
- validate(Instances) - Method in class weka.dl4j.iterators.instance.DefaultInstanceIterator
-
- validate(Instances) - Method in class weka.dl4j.iterators.instance.ImageInstanceIterator
-
Validates the input dataset.
- validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.RelationalInstanceIterator
-
- validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextEmbeddingInstanceIterator
-
- validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.cnn.CnnTextFilesEmbeddingInstanceIterator
-
- validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextEmbeddingInstanceIterator
-
- validate(Instances) - Method in class weka.dl4j.iterators.instance.sequence.text.rnn.RnnTextFilesEmbeddingInstanceIterator
-
Validates the input dataset
- valueAt(int, int) - Method in class weka.dl4j.schedules.ConstantSchedule.ConstantScheduleImpl
-
- valueOf(String) - Static method in enum weka.core.LogConfiguration.LogLevel
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.enums.AlgoMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.enums.CacheMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.enums.ConvolutionMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.enums.GradientNormalization
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.enums.PoolingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.enums.PretrainedType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.inference.ClassmapType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.schedules.ScheduleType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.Dl4jDarknet19.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.DenseNet.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.EfficientNet.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.InceptionResNetV2.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.InceptionV3.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.MobileNet.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.NASNet.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.ResNet.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.VGG.VARIATION
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum weka.dl4j.zoo.keras.Xception.VARIATION
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum weka.core.LogConfiguration.LogLevel
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.enums.AlgoMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.enums.CacheMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.enums.ConvolutionMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.enums.GradientNormalization
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.enums.PoolingType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.enums.PretrainedType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.inference.ClassmapType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.schedules.ScheduleType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.Dl4jDarknet19.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.DenseNet.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.EfficientNet.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.InceptionResNetV2.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.InceptionV3.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.MobileNet.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.NASNet.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.ResNet.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.VGG.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum weka.dl4j.zoo.keras.Xception.VARIATION
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- VGG - Class in weka.dl4j.zoo.keras
-
Wrapper class for the different versions of VGG.
- VGG() - Constructor for class weka.dl4j.zoo.keras.VGG
-
Instantiate the model.
- VGG.VARIATION - Enum in weka.dl4j.zoo.keras
-
Different variations of the model.
- VoidCallable - Interface in weka.dl4j
-
Simple callable interafce with no parameters and no return value (void).