public class SubsamplingLayer extends Layer<org.deeplearning4j.nn.conf.layers.SubsamplingLayer> implements weka.core.OptionHandler, java.io.Serializable
Constructor and Description |
---|
SubsamplingLayer()
Constructor for setting some defaults.
|
Modifier and Type | Method and Description |
---|---|
ConvolutionMode |
getConvolutionMode() |
double |
getEps() |
int[] |
getKernelSize() |
int |
getKernelSizeX() |
int |
getKernelSizeY() |
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
int[] |
getPadding() |
int |
getPaddingColumns() |
int |
getPaddingRows() |
int |
getPnorm() |
PoolingType |
getPoolingType() |
int[] |
getStride() |
int |
getStrideColumns() |
int |
getStrideRows() |
java.lang.String |
globalInfo()
Global info.
|
void |
initializeBackend()
Initialize the DL4J backend.
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options.
|
void |
setConvolutionMode(ConvolutionMode convolutionMode) |
void |
setEps(double e) |
void |
setKernelSize(int[] kernelSize) |
void |
setKernelSizeX(int kernelSizeX) |
void |
setKernelSizeY(int kernelSizeY) |
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setPadding(int[] padding) |
void |
setPaddingColumns(int padding) |
void |
setPaddingRows(int padding) |
void |
setPnorm(int p) |
void |
setPoolingType(PoolingType poolingType) |
void |
setStride(int[] stride) |
void |
setStrideColumns(int columns) |
void |
setStrideRows(int rows) |
create, getBackend, getLayerName, setBackend, setLayerName
public SubsamplingLayer()
public void initializeBackend()
ApiWrapper
initializeBackend
in interface ApiWrapper<org.deeplearning4j.nn.conf.layers.SubsamplingLayer>
public java.lang.String globalInfo()
@OptionMetadata(displayName="eps", description="The value of the eps parameter (default = 1e-8).", commandLineParamName="eps", commandLineParamSynopsis="-eps <double>", displayOrder=2) public double getEps()
public void setEps(double e)
@OptionMetadata(displayName="pnorm", description="The value of the pnorm parameter (default = 1).", commandLineParamName="pnorm", commandLineParamSynopsis="-pnorm <int>", displayOrder=3) public int getPnorm()
public void setPnorm(int p)
@OptionMetadata(displayName="convolution mode", description="The convolution mode (default = Truncate).", commandLineParamName="mode", commandLineParamSynopsis="-mode <string>", displayOrder=2) public ConvolutionMode getConvolutionMode()
public void setConvolutionMode(ConvolutionMode convolutionMode)
@OptionMetadata(displayName="number of rows in kernel", description="The number of rows in the kernel (default = 5).", commandLineParamName="rows", commandLineParamSynopsis="-rows <int>", displayOrder=4) public int getKernelSizeX()
public void setKernelSizeX(int kernelSizeX)
@OptionMetadata(displayName="number of columns in kernel", description="The number of columns in the kernel (default = 5).", commandLineParamName="columns", commandLineParamSynopsis="-columns <int>", displayOrder=5) public int getKernelSizeY()
public void setKernelSizeY(int kernelSizeY)
@ProgrammaticProperty public int[] getKernelSize()
public void setKernelSize(int[] kernelSize)
@OptionMetadata(displayName="number of rows in stride", description="The stride along the rows (default = 1).", commandLineParamName="strideRows", commandLineParamSynopsis="-strideRows <int>", displayOrder=6) public int getStrideRows()
public void setStrideRows(int rows)
@ProgrammaticProperty public int[] getStride()
public void setStride(int[] stride)
@OptionMetadata(displayName="number of columns in stride", description="The stride along the columns (default = 1).", commandLineParamName="strideColumns", commandLineParamSynopsis="-strideColumns <int>", displayOrder=7) public int getStrideColumns()
public void setStrideColumns(int columns)
@OptionMetadata(displayName="number of rows in padding", description="The number of rows in the padding (default = 0).", commandLineParamName="paddingRows", commandLineParamSynopsis="-paddingRows <int>", displayOrder=8) public int getPaddingRows()
public void setPaddingRows(int padding)
@ProgrammaticProperty public int[] getPadding()
public void setPadding(int[] padding)
@OptionMetadata(displayName="number of columns in padding", description="The number of columns in the padding (default = 0).", commandLineParamName="paddingColumns", commandLineParamSynopsis="-paddingColumns <int>", displayOrder=9) public int getPaddingColumns()
public void setPaddingColumns(int padding)
@OptionMetadata(displayName="pooling type", description="The type of pooling to use (default = MAX; options: MAX, AVG, SUM, NONE).", commandLineParamName="poolingType", commandLineParamSynopsis="-poolingType <string>", displayOrder=10) public PoolingType getPoolingType()
public void setPoolingType(PoolingType poolingType)
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class Layer<org.deeplearning4j.nn.conf.layers.SubsamplingLayer>
public java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class Layer<org.deeplearning4j.nn.conf.layers.SubsamplingLayer>
public void setOptions(java.lang.String[] options) throws java.lang.Exception
setOptions
in interface weka.core.OptionHandler
setOptions
in class Layer<org.deeplearning4j.nn.conf.layers.SubsamplingLayer>
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supported