public class Dl4jStringToWord2Vec extends Dl4jStringToWordEmbeddings
@@Article{Word2Vec, Title = {Efficient estimation of word representations in vector space.}, Author = {Mikolov, Tomas and Chen, Kai and Corrado, Greg and Dean, Jeffrey}, Journal = {arXiv preprint arXiv:1301.3781}, Year = {2013} }
Constructor and Description |
---|
Dl4jStringToWord2Vec() |
Modifier and Type | Method and Description |
---|---|
int |
getBatchSize() |
double |
getLearningRate() |
double |
getMinLearningRate() |
double |
getNegative() |
java.lang.String[] |
getOptions() |
double |
getSampling() |
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the
technical background of this class, e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter.
|
boolean |
isAllowParallelTokenization() |
boolean |
isEnableScavenger() |
boolean |
isUseAdaGrad() |
boolean |
isUseHierarchicSoftmax() |
java.util.Enumeration<weka.core.Option> |
listOptions() |
void |
setAllowParallelTokenization(boolean m_allowParallelTokenization) |
void |
setBatchSize(int m_batchSize) |
void |
setEnableScavenger(boolean m_enableScavenger) |
void |
setLearningRate(double m_learningRate) |
void |
setMinLearningRate(double m_minLearningRate) |
void |
setNegative(double m_negative) |
void |
setOptions(java.lang.String[] options)
Parses the options for this object.
|
void |
setSampling(double m_sampling) |
void |
setUseAdaGrad(boolean m_useAdaGrad) |
void |
setUseHierarchicSoftmax(boolean m_useHierarchicSoftmax) |
getAction, getCapabilities, getConcat_words, getConcatWords, getEmbedding_prefix, getEpochs, getIterations, getLayerSize, getMinWordFrequency, getPreProcessor, getSeed, getStopWordsHandler, getTextIndex, getTokenizerFactory, getWindowSize, getWorkers, setAction, setConcat_words, setConcatWords, setEmbedding_prefix, setEpochs, setIterations, setLayerSize, setMinWordFrequency, setPreProcessor, setSeed, setStopWordsHandler, setTextIndex, setTokenizerFactory, setWindowSize, setWorkers
allowAccessToFullInputFormat, batchFinished, input, input
batchFilterFile, debugTipText, doNotCheckCapabilitiesTipText, filterFile, getCapabilities, getCopyOfInputFormat, getDebug, getDoNotCheckCapabilities, getOutputFormat, getRevision, isFirstBatchDone, isNewBatch, isOutputFormatDefined, main, makeCopies, makeCopy, mayRemoveInstanceAfterFirstBatchDone, numPendingOutput, output, outputPeek, postExecution, preExecution, run, runFilter, setDebug, setDoNotCheckCapabilities, toString, useFilter, wekaStaticWrapper
public java.lang.String globalInfo()
globalInfo
in class weka.filters.SimpleFilter
public weka.core.TechnicalInformation getTechnicalInformation()
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class Dl4jStringToWordEmbeddings
public java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class Dl4jStringToWordEmbeddings
public void setOptions(java.lang.String[] options) throws java.lang.Exception
setOptions
in interface weka.core.OptionHandler
setOptions
in class Dl4jStringToWordEmbeddings
options
- the options to usejava.lang.Exception
- if setting of options fails@OptionMetadata(displayName="batchSize", description="The mini-batch size (default = 512).", commandLineParamName="batchSize", commandLineParamSynopsis="-batchSize <int>", displayOrder=15) public int getBatchSize()
public void setBatchSize(int m_batchSize)
@OptionMetadata(displayName="learningRate", description="The learning rate (default = 0.025).", commandLineParamName="learningRate", commandLineParamSynopsis="-learningRate <double>", displayOrder=16) public double getLearningRate()
public void setLearningRate(double m_learningRate)
@OptionMetadata(displayName="minLearningRate", description="This method defines minimal learning rate value for training (default = 1.0E-4).", commandLineParamName="minLearningRate", commandLineParamSynopsis="-minLearningRate <double>", displayOrder=17) public double getMinLearningRate()
public void setMinLearningRate(double m_minLearningRate)
@OptionMetadata(displayName="useAdaGrad", description="This method defines whether adaptive gradients should be used or not (default = false).", commandLineParamName="useAdaGrad", commandLineParamSynopsis="-useAdaGrad", commandLineParamIsFlag=true, displayOrder=18) public boolean isUseAdaGrad()
public void setUseAdaGrad(boolean m_useAdaGrad)
@OptionMetadata(displayName="negative", description="The negative sampling value for skip-gram algorithm (default = 0.0).", commandLineParamName="negative", commandLineParamSynopsis="-negative <double>", displayOrder=19) public double getNegative()
public void setNegative(double m_negative)
@OptionMetadata(displayName="useHierarchicSoftmax", description="Enable/disable hierarchic softmax (default = true).", commandLineParamName="useHierarchicSoftmax", commandLineParamSynopsis="-useHierarchicSoftmax", commandLineParamIsFlag=true, displayOrder=20) public boolean isUseHierarchicSoftmax()
public void setUseHierarchicSoftmax(boolean m_useHierarchicSoftmax)
@OptionMetadata(displayName="sampling", description="The sub-sampling threshold (default = 0.0).", commandLineParamName="sampling", commandLineParamSynopsis="-sampling <double>", displayOrder=21) public double getSampling()
public void setSampling(double m_sampling)
@OptionMetadata(displayName="allowParallelTokenization", description="Enables/disables parallel tokenization (default = true).", commandLineParamName="allowParallelTokenization", commandLineParamSynopsis="-allowParallelTokenization", commandLineParamIsFlag=true, displayOrder=22) public boolean isAllowParallelTokenization()
public void setAllowParallelTokenization(boolean m_allowParallelTokenization)
@OptionMetadata(displayName="enableScavenger", description="Enables/disables periodical vocab truncation during construction (default = false).", commandLineParamName="enableScavenger", commandLineParamSynopsis="-enableScavenger", commandLineParamIsFlag=true, displayOrder=23) public boolean isEnableScavenger()
public void setEnableScavenger(boolean m_enableScavenger)