public class Dl4jStringToWord2Vec extends Dl4jStringToWordEmbeddings
@@Article{Word2Vec,
Title = {Efficient estimation of word representations in vector space.},
Author = {Mikolov, Tomas and Chen, Kai and Corrado, Greg and Dean, Jeffrey},
Journal = {arXiv preprint arXiv:1301.3781},
Year = {2013}
}
| Constructor and Description |
|---|
Dl4jStringToWord2Vec() |
| Modifier and Type | Method and Description |
|---|---|
int |
getBatchSize() |
double |
getLearningRate() |
double |
getMinLearningRate() |
double |
getNegative() |
java.lang.String[] |
getOptions() |
double |
getSampling() |
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the
technical background of this class, e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter.
|
boolean |
isAllowParallelTokenization() |
boolean |
isEnableScavenger() |
boolean |
isUseAdaGrad() |
boolean |
isUseHierarchicSoftmax() |
java.util.Enumeration<weka.core.Option> |
listOptions() |
void |
setAllowParallelTokenization(boolean m_allowParallelTokenization) |
void |
setBatchSize(int m_batchSize) |
void |
setEnableScavenger(boolean m_enableScavenger) |
void |
setLearningRate(double m_learningRate) |
void |
setMinLearningRate(double m_minLearningRate) |
void |
setNegative(double m_negative) |
void |
setOptions(java.lang.String[] options)
Parses the options for this object.
|
void |
setSampling(double m_sampling) |
void |
setUseAdaGrad(boolean m_useAdaGrad) |
void |
setUseHierarchicSoftmax(boolean m_useHierarchicSoftmax) |
getAction, getCapabilities, getConcat_words, getConcatWords, getEmbedding_prefix, getEpochs, getIterations, getLayerSize, getMinWordFrequency, getPreProcessor, getSeed, getStopWordsHandler, getTextIndex, getTokenizerFactory, getWindowSize, getWorkers, setAction, setConcat_words, setConcatWords, setEmbedding_prefix, setEpochs, setIterations, setLayerSize, setMinWordFrequency, setPreProcessor, setSeed, setStopWordsHandler, setTextIndex, setTokenizerFactory, setWindowSize, setWorkersallowAccessToFullInputFormat, batchFinished, input, inputbatchFilterFile, debugTipText, doNotCheckCapabilitiesTipText, filterFile, getCapabilities, getCopyOfInputFormat, getDebug, getDoNotCheckCapabilities, getOutputFormat, getRevision, isFirstBatchDone, isNewBatch, isOutputFormatDefined, main, makeCopies, makeCopy, mayRemoveInstanceAfterFirstBatchDone, numPendingOutput, output, outputPeek, postExecution, preExecution, run, runFilter, setDebug, setDoNotCheckCapabilities, toString, useFilter, wekaStaticWrapperpublic java.lang.String globalInfo()
globalInfo in class weka.filters.SimpleFilterpublic weka.core.TechnicalInformation getTechnicalInformation()
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class Dl4jStringToWordEmbeddingspublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class Dl4jStringToWordEmbeddingspublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
setOptions in interface weka.core.OptionHandlersetOptions in class Dl4jStringToWordEmbeddingsoptions - the options to usejava.lang.Exception - if setting of options fails@OptionMetadata(displayName="batchSize",
description="The mini-batch size (default = 512).",
commandLineParamName="batchSize",
commandLineParamSynopsis="-batchSize <int>",
displayOrder=15)
public int getBatchSize()
public void setBatchSize(int m_batchSize)
@OptionMetadata(displayName="learningRate",
description="The learning rate (default = 0.025).",
commandLineParamName="learningRate",
commandLineParamSynopsis="-learningRate <double>",
displayOrder=16)
public double getLearningRate()
public void setLearningRate(double m_learningRate)
@OptionMetadata(displayName="minLearningRate",
description="This method defines minimal learning rate value for training (default = 1.0E-4).",
commandLineParamName="minLearningRate",
commandLineParamSynopsis="-minLearningRate <double>",
displayOrder=17)
public double getMinLearningRate()
public void setMinLearningRate(double m_minLearningRate)
@OptionMetadata(displayName="useAdaGrad",
description="This method defines whether adaptive gradients should be used or not (default = false).",
commandLineParamName="useAdaGrad",
commandLineParamSynopsis="-useAdaGrad",
commandLineParamIsFlag=true,
displayOrder=18)
public boolean isUseAdaGrad()
public void setUseAdaGrad(boolean m_useAdaGrad)
@OptionMetadata(displayName="negative",
description="The negative sampling value for skip-gram algorithm (default = 0.0).",
commandLineParamName="negative",
commandLineParamSynopsis="-negative <double>",
displayOrder=19)
public double getNegative()
public void setNegative(double m_negative)
@OptionMetadata(displayName="useHierarchicSoftmax",
description="Enable/disable hierarchic softmax (default = true).",
commandLineParamName="useHierarchicSoftmax",
commandLineParamSynopsis="-useHierarchicSoftmax",
commandLineParamIsFlag=true,
displayOrder=20)
public boolean isUseHierarchicSoftmax()
public void setUseHierarchicSoftmax(boolean m_useHierarchicSoftmax)
@OptionMetadata(displayName="sampling",
description="The sub-sampling threshold (default = 0.0).",
commandLineParamName="sampling",
commandLineParamSynopsis="-sampling <double>",
displayOrder=21)
public double getSampling()
public void setSampling(double m_sampling)
@OptionMetadata(displayName="allowParallelTokenization",
description="Enables/disables parallel tokenization (default = true).",
commandLineParamName="allowParallelTokenization",
commandLineParamSynopsis="-allowParallelTokenization",
commandLineParamIsFlag=true,
displayOrder=22)
public boolean isAllowParallelTokenization()
public void setAllowParallelTokenization(boolean m_allowParallelTokenization)
@OptionMetadata(displayName="enableScavenger",
description="Enables/disables periodical vocab truncation during construction (default = false).",
commandLineParamName="enableScavenger",
commandLineParamSynopsis="-enableScavenger",
commandLineParamIsFlag=true,
displayOrder=23)
public boolean isEnableScavenger()
public void setEnableScavenger(boolean m_enableScavenger)